Year 2025,
Volume: 12 Issue: 4, 999 - 1012, 31.12.2025
Seda Turan
,
Nazlı İpek Kul Gül
,
Selcan Karakuş
,
Serhat Ursavaş
,
Gamze Gürsu
,
Nevin Taşaltın
,
Niyazi Uğur Koçkal
References
-
Abay, G. (2006, November 1-4). Briyofitlerin kullanım alanları, Ekolojik ve Ekonomik önemi. In: I. Uluslararası Odun Dışı Orman Ürünleri Sempozyumu, (pp. 258–265), Trabzon, Türkiye.
-
Abay, G., & Kamer, D. (2010, May 20-22). Biyoçeşitliliğimizin Az Bilinen Bileşenleri "Bryofitler”. In: III. Ulusal Karadeniz Ormancılık Kongresi , (pp. 1115–1125), Artvin, Türkiye.
-
Aquilina, A., Borg, R. P., & Buhagiar, J. (2018). The application of Natural Organic Additives in Concrete: Opuntia ficus-indica. IOP Conference Series: Materials Science and Engineering, 442(1), 012016. https://doi.org/10.1088/1757-899X/442/1/012016
-
ASTM C 1437. (2009). Standard test method for flow of hydraulic cement mortar. ASTM International.
-
Benek, A., Canli, K., & Altuner, E. M. (2022). Traditional medicinal uses of mosses. Anatolian Bryology, 8(1), 57–65. https://doi.org/10.26672/anatolianbryology.1061190
-
Buck, W. R., Shaw, A. J., & Goffinet, B. (2009). Morphology, anatomy, and classification of the Bryophyta. In: A. J. Shaw (Eds.), Bryophyte Biology, (pp. 55–138). https://doi.org/10.1017/CBO9780511754807.003
-
Çetin, B. (1995). Biyolojik Çevre ve Geleceğimiz. Türkiye Flora ve Faunası. 1–20.
-
Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Diafi, D., Amziane, S., & Farcas, F. (2020). Impact of hemp shiv extractives on hydration of Portland cement. Construction and Building Materials, 244, 118300. https://doi.org/10.1016/j.conbuildmat.2020.118300
-
Diquélou, Y., Gourlay, E., Arnaud, L., & Kurek, B. (2015). Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cement and Concrete Composites, 55, 112–121. https://doi.org/10.1016/j.cemconcomp.2014.09.004
-
EN 196-1. (2016). EN 196-1:2016 Methods of testing cement Part 1: Determination of strength. British Standard.
-
Glime, J. M. (2017). Chapter 5: Construction. In: Bryophyte Ecology. Volume 2.
-
Harris, E. S. J. (2008). Ethnobryology: Traditional uses and folk classification of bryophytes. Bryologist, 111(2), 169-217.
-
Hazarika, A., Hazarika, I., Gogoi, M., Bora, S. S., Borah, R. R., Goutam, P. J., & Saikia, N. (2018). Use of a plant based polymeric material as a low cost chemical admixture in cement mortar and concrete preparations. Journal of Building Engineering, 15, 194–202. https://doi.org/10.1016/j.jobe.2017.11.017
-
Kockal, N. U. (2015). Behavior of mortars produced with construction wastes exposed to different treatments. Indian Journal of Engineering and Materials Sciences, 22(2).
-
Long, W., & Wang, Y. (2021). Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 278, 122333 https://doi.org/10.1016/j.conbuildmat.2021.122333
-
Mahmood, H. F., Dabbagh, H., & Mohammed, A. A. (2021). Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete. Case Studies in Construction Materials, 15, e00699. https://doi.org/10.1016/j.cscm.2021.e00699
-
Mahmood, R. A., & Kockal, N. U. (2020). Cementitious materials incorporating waste plastics: a review. SN Applied Sciences, 2(12). https://doi.org/10.1007/s42452-020-03905-6
-
Malathy, R., Chung, I. M., & Prabakaran, M. (2020). Characteristics of fly ash based concrete prepared with bio admixtures as internal curing agents. Construction and Building Materials, 262, 120596. https://doi.org/10.1016/j.conbuildmat.2020.120596
-
Malathy, R., Selvam, B., & Prabakaran, M. (2023). Evaluation of Aloe barbadensis Miller and Musa x paradisiaca as Internal Curing Agents in Concrete. Sustainability, 15(4), 3591. https://doi.org/10.3390/su15043591
-
Nyabuto, A. O., Abuodha, S. O., Mwero, J. N., Scheinherrová, L., & Marangu, J. M. (2024). Aloe Vera-Based Concrete Superplasticizer for Enhanced Consolidation with Limestone Calcined Clay Cement. Applied Sciences, 14(1), 358. https://doi.org/10.3390/app14010358
-
Okeniyi, J. O., Popoola, A. P. I., & Loto, C. A. (2017). Corrosion-inhibition and compressive-strength performance of Phyllanthus muellerianus and triethanolamine on steel-reinforced concrete immersed in saline/marine simulating-environment. Energy Procedia, 119, 972–979. https://doi.org/10.1016/j.egypro.2017.07.130
-
Okeniyi, J. O., Popoola, A. P. I., & Okeniyi, E. T. (2018). Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete. International Journal of Corrosion, 2018(1), 5949042. https://doi.org/10.1155/2018/5949042
-
Palanisamy, S. P., Maheswaran, G., Selvarani, A. G., Kamal, C., & Venkatesh, G. (2018). Ricinus communis – A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in concrete in chloride media. Journal of Building Engineering, 19, 376–383. https://doi.org/10.1016/j.jobe.2018.05.020
-
Ravi, R., Selvaraj, T., & Sekar, S. K. (2016). Characterization of Hydraulic Lime Mortar Containing Opuntia ficus-indica as a Bio-Admixture for Restoration Applications. International Journal of Architectural Heritage, 10(6), 714-725. https://doi.org/10.1080/15583058.2015.1109735
-
Saxena, D. K., & Harrinder. (2004). Uses of bryophytes. Resonance, 9(6), 56–65. https://doi.org/10.1007/BF02839221
-
Shelar, A. B., Mahindrakar, A. B., & Neeraja, D. (2021). Sustainable alternatives in concrete along with the use of medicinal plant Sapindus Mukorossi as a green workability agent. Innovative Infrastructure Solutions, 6(4), 228. https://doi.org/10.1007/s41062-021-00603-z
-
Ursavaş, S., & Işin, Z. (2019). New records of Bryum gemmiferum and Atrichum crispum for Turkey. Plant Biosystems, 153(5), 686–690. https://doi.org/10.1080/11263504.2018.1539041
-
Wang, B., Lu, K., Guangmin, D., & Wu, Q. (2023). Study on the effect of plant extracts as low carbon green admixtures on the performance of cement mortar. Case Studies in Construction Materials, 18, e02080. https://doi.org/10.1016/j.cscm.2023.e02080
Using Moss Extract on Cementitious Mixture with Enhanced Workability and Mechanical Properties
Year 2025,
Volume: 12 Issue: 4, 999 - 1012, 31.12.2025
Seda Turan
,
Nazlı İpek Kul Gül
,
Selcan Karakuş
,
Serhat Ursavaş
,
Gamze Gürsu
,
Nevin Taşaltın
,
Niyazi Uğur Koçkal
Abstract
The negative environmental effects of cement and concrete additives, as well as the carbon emissions generated during the fabrication of cement and other required concrete components, have come into increasing focus in recent years. Cement-based construction materials, which often originate from plant extracts and agricultural residue, have gained a lot of interest lately due to their low energy requirements, affordability, and environmentally friendly characteristics. Within this context, the present study explores the application of synthesized moss extract (ME)-based nanoparticles (NPs) to enhance the mechanical performance of cement, mitigate environmental impacts, and reduce carbon emissions. Surface characterization of the NPs was carried out using Transmission Electron Microscopy (TEM), which revealed moss extract-based nanoparticles (ME-NPs) with particle sizes below 100 nm and irregular needle-like shapes. The effects of ME-NPs on the physical and mechanical properties of cement mortar were investigated by testing water absorption, compressive strength, flexural strength, and microstructure. The experimental results showed that extracts of Homalothecium sericeum and Dicranum scoparium specifically enhanced compressive strength. Overall, the findings reveal that MEs can be utilized to develop eco-friendly, workable cementitious composites with improved mechanical properties.
References
-
Abay, G. (2006, November 1-4). Briyofitlerin kullanım alanları, Ekolojik ve Ekonomik önemi. In: I. Uluslararası Odun Dışı Orman Ürünleri Sempozyumu, (pp. 258–265), Trabzon, Türkiye.
-
Abay, G., & Kamer, D. (2010, May 20-22). Biyoçeşitliliğimizin Az Bilinen Bileşenleri "Bryofitler”. In: III. Ulusal Karadeniz Ormancılık Kongresi , (pp. 1115–1125), Artvin, Türkiye.
-
Aquilina, A., Borg, R. P., & Buhagiar, J. (2018). The application of Natural Organic Additives in Concrete: Opuntia ficus-indica. IOP Conference Series: Materials Science and Engineering, 442(1), 012016. https://doi.org/10.1088/1757-899X/442/1/012016
-
ASTM C 1437. (2009). Standard test method for flow of hydraulic cement mortar. ASTM International.
-
Benek, A., Canli, K., & Altuner, E. M. (2022). Traditional medicinal uses of mosses. Anatolian Bryology, 8(1), 57–65. https://doi.org/10.26672/anatolianbryology.1061190
-
Buck, W. R., Shaw, A. J., & Goffinet, B. (2009). Morphology, anatomy, and classification of the Bryophyta. In: A. J. Shaw (Eds.), Bryophyte Biology, (pp. 55–138). https://doi.org/10.1017/CBO9780511754807.003
-
Çetin, B. (1995). Biyolojik Çevre ve Geleceğimiz. Türkiye Flora ve Faunası. 1–20.
-
Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Diafi, D., Amziane, S., & Farcas, F. (2020). Impact of hemp shiv extractives on hydration of Portland cement. Construction and Building Materials, 244, 118300. https://doi.org/10.1016/j.conbuildmat.2020.118300
-
Diquélou, Y., Gourlay, E., Arnaud, L., & Kurek, B. (2015). Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cement and Concrete Composites, 55, 112–121. https://doi.org/10.1016/j.cemconcomp.2014.09.004
-
EN 196-1. (2016). EN 196-1:2016 Methods of testing cement Part 1: Determination of strength. British Standard.
-
Glime, J. M. (2017). Chapter 5: Construction. In: Bryophyte Ecology. Volume 2.
-
Harris, E. S. J. (2008). Ethnobryology: Traditional uses and folk classification of bryophytes. Bryologist, 111(2), 169-217.
-
Hazarika, A., Hazarika, I., Gogoi, M., Bora, S. S., Borah, R. R., Goutam, P. J., & Saikia, N. (2018). Use of a plant based polymeric material as a low cost chemical admixture in cement mortar and concrete preparations. Journal of Building Engineering, 15, 194–202. https://doi.org/10.1016/j.jobe.2017.11.017
-
Kockal, N. U. (2015). Behavior of mortars produced with construction wastes exposed to different treatments. Indian Journal of Engineering and Materials Sciences, 22(2).
-
Long, W., & Wang, Y. (2021). Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 278, 122333 https://doi.org/10.1016/j.conbuildmat.2021.122333
-
Mahmood, H. F., Dabbagh, H., & Mohammed, A. A. (2021). Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete. Case Studies in Construction Materials, 15, e00699. https://doi.org/10.1016/j.cscm.2021.e00699
-
Mahmood, R. A., & Kockal, N. U. (2020). Cementitious materials incorporating waste plastics: a review. SN Applied Sciences, 2(12). https://doi.org/10.1007/s42452-020-03905-6
-
Malathy, R., Chung, I. M., & Prabakaran, M. (2020). Characteristics of fly ash based concrete prepared with bio admixtures as internal curing agents. Construction and Building Materials, 262, 120596. https://doi.org/10.1016/j.conbuildmat.2020.120596
-
Malathy, R., Selvam, B., & Prabakaran, M. (2023). Evaluation of Aloe barbadensis Miller and Musa x paradisiaca as Internal Curing Agents in Concrete. Sustainability, 15(4), 3591. https://doi.org/10.3390/su15043591
-
Nyabuto, A. O., Abuodha, S. O., Mwero, J. N., Scheinherrová, L., & Marangu, J. M. (2024). Aloe Vera-Based Concrete Superplasticizer for Enhanced Consolidation with Limestone Calcined Clay Cement. Applied Sciences, 14(1), 358. https://doi.org/10.3390/app14010358
-
Okeniyi, J. O., Popoola, A. P. I., & Loto, C. A. (2017). Corrosion-inhibition and compressive-strength performance of Phyllanthus muellerianus and triethanolamine on steel-reinforced concrete immersed in saline/marine simulating-environment. Energy Procedia, 119, 972–979. https://doi.org/10.1016/j.egypro.2017.07.130
-
Okeniyi, J. O., Popoola, A. P. I., & Okeniyi, E. T. (2018). Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete. International Journal of Corrosion, 2018(1), 5949042. https://doi.org/10.1155/2018/5949042
-
Palanisamy, S. P., Maheswaran, G., Selvarani, A. G., Kamal, C., & Venkatesh, G. (2018). Ricinus communis – A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in concrete in chloride media. Journal of Building Engineering, 19, 376–383. https://doi.org/10.1016/j.jobe.2018.05.020
-
Ravi, R., Selvaraj, T., & Sekar, S. K. (2016). Characterization of Hydraulic Lime Mortar Containing Opuntia ficus-indica as a Bio-Admixture for Restoration Applications. International Journal of Architectural Heritage, 10(6), 714-725. https://doi.org/10.1080/15583058.2015.1109735
-
Saxena, D. K., & Harrinder. (2004). Uses of bryophytes. Resonance, 9(6), 56–65. https://doi.org/10.1007/BF02839221
-
Shelar, A. B., Mahindrakar, A. B., & Neeraja, D. (2021). Sustainable alternatives in concrete along with the use of medicinal plant Sapindus Mukorossi as a green workability agent. Innovative Infrastructure Solutions, 6(4), 228. https://doi.org/10.1007/s41062-021-00603-z
-
Ursavaş, S., & Işin, Z. (2019). New records of Bryum gemmiferum and Atrichum crispum for Turkey. Plant Biosystems, 153(5), 686–690. https://doi.org/10.1080/11263504.2018.1539041
-
Wang, B., Lu, K., Guangmin, D., & Wu, Q. (2023). Study on the effect of plant extracts as low carbon green admixtures on the performance of cement mortar. Case Studies in Construction Materials, 18, e02080. https://doi.org/10.1016/j.cscm.2023.e02080