Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 1013 - 1027, 31.12.2025
https://doi.org/10.54287/gujsa.1779021

Abstract

References

  • Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., & Stutzmann, M. (2000). Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics, 87(1), 334-344. https://doi.org/10.1063/1.371866
  • Asgari, A. & Kalafi, M. (2006). The control of two-dimensional-electron-gas density and mobility in AlGaN/GaN heterostructures with Schottky gate. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(5-7), 898-901. https://doi.org/10.1016/j.msec.2005.09.002
  • Bayal, Ö., Demir, D., Bilgili, A. K., Kaya, N., Öztürk, M. K., & Kalaycı, Ş. (2024). HR-XRD and AFM Analysis of AlN/SiC Structures for Optoelectronic Device Applications. Gazi University Journal of Science Part A: Engineering and Innovation,11(2), 264-273. https://doi.org/10.54287/gujsa.1435807
  • Bayal, Ö., Balcı, E., Bilgili, A. K., Öztürk, M., Özçelik, S., & Özbay, E. (2023). Analysis of Dislocation Density for GaN Based HEMTs in Screw Mod. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 131-139. https://doi.org/10.54287/gujsa.1215224
  • Birkholz, M. (2006). Thin film analysis by X-ray scattering. John Wiley & Sons.
  • Durmuş, H., & Kocabaş, K. (2022). The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. Journal of Materials Science: Materials in Electronics, 33(21), 17079-17089. https://doi.org/10.1007/s10854-022-08584-0
  • Eastman, L.F., Tilak, V. Kaper, V., Smart, J., Thompson, R., Green, B., Shealy, J. R., & Prunty, T. (2002). Progress in high-power, high frequency AlGaN/GaN HEMTs. Physica Status Solidi a-Applied Research, 194(2), 433-438. https://doi.org/10.1002/1521-396X(200212)194:2<433::AID-PSSA433>3.0.CO;2-R
  • Etzkorn, E. V., & Clarke, D. R. (2001), Cracking of GaN films. Journal of Applied Physics, 89(2), 1025-1034. https://doi.org/10.1063/1.1330243
  • Hariyanto, B., Wardani, D. A. P., Kurniawati, N., Har, N. P., Darmawan, N., & Irzaman. (2021). X-ray peak profile analysis of silica by Williamson–Hall and size-strain plot methods. Journal of Physics: Conference Series, 2019, 012106. https://doi.org/10.1088/1742-6596/2019/1/012106
  • Kachanov, M. L., Shafiro, B., & Tsukrov, I. (2003). Handbook of elasticity solutions. Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0169-3
  • Khorsand Zak, A., Majid, W.H.A., Abrishami, M.E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sciences, 13(1), 251. https://doi.org/10.1016/j.solidstatesciences.2010.11.024
  • Liu, L., & Edgar, J. H. (2002). Substrates for gallium nitride epitaxy. Materials Science and Engineering: R: Reports, 37(3), 61-128 https://doi.org/10.1016/S0927-796X(02)00008-6
  • Maruska, H. P., & Rhines, W. C. (2015), A modern perspective on the history of semiconductor nitride blue light sources. Solid-State Electronics, 111, 32-41. https://doi.org/10.1016/j.sse.2015.04.010
  • Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1). https://doi.org/10.1186/2251-7235-6-6
  • Ponce, F. A. (1998). Structural defects and materials performance in the III-V nitrides. In: B. Gil (Eds.) Group Ill Nitride Semiconductor Compounds: Physics and Applications (pp. 123-157), New York: Oxford University Press. https://doi.org/10.1093/oso/9780198501596.003.0004
  • Qi, M., Li, G., Protasenko, V., Zhao, P., Verma, J., Song, B., Ganguly, S., Zhu, M., Hu, Z., Yan, X., Mintairov, A., Xing, H. G., & Jena, D. (2015). Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and 15N isotopes. Applied Physics Letters, 106(4), 041906. https://doi.org/10.1063/1.4906900
  • Rosenberg, Y., Machavariani, V., Voronel, A., Garber, S., Rubshtein, A., Frenkel, A. I., & Stern, E. A. (2000). Strain energy density in the X-ray powder diffraction from mixed crystals and alloys. Journal of Physics: Condensed Matter, 12(37), 8081-8087. https://doi.org/10.1088/0953-8984/12/37/307
  • Shealy, J.R., Kaper, V., Tilak, V., Prunty, T., Smart, J. A., Green, B., & Eastman, L. F. (2002). An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer. Journal of Physics-Condensed Matter, 14(13), 3499-3509. https://doi.org/10.1088/0953-8984/14/13/308
  • Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N. Q., Buttari, D., Smorchkova, I. P., Keller, S., DenBaars, S. P., & Mishra, U. K. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459. https://doi.org/10.1109/55.954910
  • Sivakami, R., Dhanuskodi, S., & Karvembu, R. (2016). Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 43-50. https://doi.org/10.1016/j.saa.2015.07.008
  • Uemoto, Y., Hikita, M., Uneo, H., Matsuo, H., Ishida, H., Yanagihara, M., Ueda, T., Tanaka, T., & Ueda, D. (2006, December 11-13). A normally-off AlGaN/GaN transistor with RonA=2.6mΩcm2 and BVds=640V using conductivity modulation. In: International Electron Devices Meeting, San Francisco, CA, USA. https://doi.org/10.1109/IEDM.2006.346930
  • Van Nostrand, J. E., Solomon, J., Saxler, A., Xie, Q. H., Reynolds, D. C. & Look, D. C. (2000). Dissociation of Al2O3(0001) substrates and the roles of silicon and oxygen in n-type GaN thin solid films grown by gas-source molecular beam epitaxy. Journal of Applied Physics, 87(12), 8766-8772. https://doi.org/10.1063/1.373608
  • Venkateswarlu, K., Chandra Bose, A., & Rameshbabu, N. (2010). X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B: Condensed Matter, 405(20), 4256-4261. https://doi.org/10.1016/j.physb.2010.07.020
  • Xing, H., Keller, S., Wu, Y. F., McCarthy, L., Smorchkova, I. P., Buttari, D., Coffie, R., Green, D. S., Parish, G., Heikman, S., Shen, L., Zhang, N., Xu, J. J., Keller, B. P., DenBaars, S. P., & Mishra, U. K. (2001). Gallium nitride based transistors. Journal of Physics-Condensed Matter, 13(32), 7139-7157 https://doi.org/10.1088/0953-8984/13/32/317
  • Yusuf, S. I., Mohammad, S. J., & Ali, M. H. (2024). Scherrer and Williamson-Hall estimated particle size using XRD analysis for cast aluminum alloys. Journal of Theoretical and Applied Physics, 18. https://doi.org/10.57647/j.jtap.2024.si-AICIS23.17
  • Zhang, N.Q., Moran, B., DenBaars, S. P., Mishra, U. K., Wang, X. W., & Ma, T. P. (2001). Kilovolt AlGaN/GaN HEMTs as switching devices. Physica Status Solidi a Applied Research, 188(1), 213-217. https://doi.org/10.1002/1521-396X(200111)188:1<213::AID-PSSA213>3.0.CO;2-8

Comparative Structural Analysis of Graded and Standart AlΔXGa1-ΔXN HEMT Devices by Williamson-Hall Method

Year 2025, Volume: 12 Issue: 4, 1013 - 1027, 31.12.2025
https://doi.org/10.54287/gujsa.1779021

Abstract

It is well known that a fast response is a crucial property of crystal structures used in the design of optoelectronic devices. In line with this, the study investigates an AlxGa1-xN high electron mobility transistor (HEMT) grown on double-polished sapphire using the metal-organic chemical vapor deposition (MOCVD) technique. These structures are durable to high temperature, pressure and voltage. Sapphire (Al2O3) is the most common wafer in growth of group-III nitrites. Graded AlGaN is one of the layers grown. Here Al ratio is at a determined Δx range. Other layer is in standart HEMT structure. Crystallite size and lattice strain are determined by using Williamson-Hall (W-H) method dependent on X-ray peak broadening analysis. Also, other physical parameters such as energy density, stress and strain, are obtained by using different models dependent on W-H method. These models are, Uniform deformation model (UDM), Uniform deformation stress model (UDSM) and Uniform deformation energy density model (UDEDM). In accordance with these models, lattice broadening and relaxation are seen in graded AlGaN buffer layer. Crystallite size is formed by tiny particles. Grain size of graded layer is increasing and micro-strains shift to small values. From this point of view, it is understood that graded buffer layer makes differences in deformation properties. Strain value of graded AlGaN value is shifted from 2.1x10-3 to 1.05x10-3. For this reason HEMT structure should be optimised. Additionally, the spectral vibrations of the sapphire, GaN, and AlN layers were characterized using Raman spectroscopy.

References

  • Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., Eastman, L. F., Dimitrov, R., Mitchell, A., & Stutzmann, M. (2000). Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics, 87(1), 334-344. https://doi.org/10.1063/1.371866
  • Asgari, A. & Kalafi, M. (2006). The control of two-dimensional-electron-gas density and mobility in AlGaN/GaN heterostructures with Schottky gate. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26(5-7), 898-901. https://doi.org/10.1016/j.msec.2005.09.002
  • Bayal, Ö., Demir, D., Bilgili, A. K., Kaya, N., Öztürk, M. K., & Kalaycı, Ş. (2024). HR-XRD and AFM Analysis of AlN/SiC Structures for Optoelectronic Device Applications. Gazi University Journal of Science Part A: Engineering and Innovation,11(2), 264-273. https://doi.org/10.54287/gujsa.1435807
  • Bayal, Ö., Balcı, E., Bilgili, A. K., Öztürk, M., Özçelik, S., & Özbay, E. (2023). Analysis of Dislocation Density for GaN Based HEMTs in Screw Mod. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 131-139. https://doi.org/10.54287/gujsa.1215224
  • Birkholz, M. (2006). Thin film analysis by X-ray scattering. John Wiley & Sons.
  • Durmuş, H., & Kocabaş, K. (2022). The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. Journal of Materials Science: Materials in Electronics, 33(21), 17079-17089. https://doi.org/10.1007/s10854-022-08584-0
  • Eastman, L.F., Tilak, V. Kaper, V., Smart, J., Thompson, R., Green, B., Shealy, J. R., & Prunty, T. (2002). Progress in high-power, high frequency AlGaN/GaN HEMTs. Physica Status Solidi a-Applied Research, 194(2), 433-438. https://doi.org/10.1002/1521-396X(200212)194:2<433::AID-PSSA433>3.0.CO;2-R
  • Etzkorn, E. V., & Clarke, D. R. (2001), Cracking of GaN films. Journal of Applied Physics, 89(2), 1025-1034. https://doi.org/10.1063/1.1330243
  • Hariyanto, B., Wardani, D. A. P., Kurniawati, N., Har, N. P., Darmawan, N., & Irzaman. (2021). X-ray peak profile analysis of silica by Williamson–Hall and size-strain plot methods. Journal of Physics: Conference Series, 2019, 012106. https://doi.org/10.1088/1742-6596/2019/1/012106
  • Kachanov, M. L., Shafiro, B., & Tsukrov, I. (2003). Handbook of elasticity solutions. Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0169-3
  • Khorsand Zak, A., Majid, W.H.A., Abrishami, M.E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sciences, 13(1), 251. https://doi.org/10.1016/j.solidstatesciences.2010.11.024
  • Liu, L., & Edgar, J. H. (2002). Substrates for gallium nitride epitaxy. Materials Science and Engineering: R: Reports, 37(3), 61-128 https://doi.org/10.1016/S0927-796X(02)00008-6
  • Maruska, H. P., & Rhines, W. C. (2015), A modern perspective on the history of semiconductor nitride blue light sources. Solid-State Electronics, 111, 32-41. https://doi.org/10.1016/j.sse.2015.04.010
  • Mote, V., Purushotham, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1). https://doi.org/10.1186/2251-7235-6-6
  • Ponce, F. A. (1998). Structural defects and materials performance in the III-V nitrides. In: B. Gil (Eds.) Group Ill Nitride Semiconductor Compounds: Physics and Applications (pp. 123-157), New York: Oxford University Press. https://doi.org/10.1093/oso/9780198501596.003.0004
  • Qi, M., Li, G., Protasenko, V., Zhao, P., Verma, J., Song, B., Ganguly, S., Zhu, M., Hu, Z., Yan, X., Mintairov, A., Xing, H. G., & Jena, D. (2015). Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and 15N isotopes. Applied Physics Letters, 106(4), 041906. https://doi.org/10.1063/1.4906900
  • Rosenberg, Y., Machavariani, V., Voronel, A., Garber, S., Rubshtein, A., Frenkel, A. I., & Stern, E. A. (2000). Strain energy density in the X-ray powder diffraction from mixed crystals and alloys. Journal of Physics: Condensed Matter, 12(37), 8081-8087. https://doi.org/10.1088/0953-8984/12/37/307
  • Shealy, J.R., Kaper, V., Tilak, V., Prunty, T., Smart, J. A., Green, B., & Eastman, L. F. (2002). An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer. Journal of Physics-Condensed Matter, 14(13), 3499-3509. https://doi.org/10.1088/0953-8984/14/13/308
  • Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N. Q., Buttari, D., Smorchkova, I. P., Keller, S., DenBaars, S. P., & Mishra, U. K. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459. https://doi.org/10.1109/55.954910
  • Sivakami, R., Dhanuskodi, S., & Karvembu, R. (2016). Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 43-50. https://doi.org/10.1016/j.saa.2015.07.008
  • Uemoto, Y., Hikita, M., Uneo, H., Matsuo, H., Ishida, H., Yanagihara, M., Ueda, T., Tanaka, T., & Ueda, D. (2006, December 11-13). A normally-off AlGaN/GaN transistor with RonA=2.6mΩcm2 and BVds=640V using conductivity modulation. In: International Electron Devices Meeting, San Francisco, CA, USA. https://doi.org/10.1109/IEDM.2006.346930
  • Van Nostrand, J. E., Solomon, J., Saxler, A., Xie, Q. H., Reynolds, D. C. & Look, D. C. (2000). Dissociation of Al2O3(0001) substrates and the roles of silicon and oxygen in n-type GaN thin solid films grown by gas-source molecular beam epitaxy. Journal of Applied Physics, 87(12), 8766-8772. https://doi.org/10.1063/1.373608
  • Venkateswarlu, K., Chandra Bose, A., & Rameshbabu, N. (2010). X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B: Condensed Matter, 405(20), 4256-4261. https://doi.org/10.1016/j.physb.2010.07.020
  • Xing, H., Keller, S., Wu, Y. F., McCarthy, L., Smorchkova, I. P., Buttari, D., Coffie, R., Green, D. S., Parish, G., Heikman, S., Shen, L., Zhang, N., Xu, J. J., Keller, B. P., DenBaars, S. P., & Mishra, U. K. (2001). Gallium nitride based transistors. Journal of Physics-Condensed Matter, 13(32), 7139-7157 https://doi.org/10.1088/0953-8984/13/32/317
  • Yusuf, S. I., Mohammad, S. J., & Ali, M. H. (2024). Scherrer and Williamson-Hall estimated particle size using XRD analysis for cast aluminum alloys. Journal of Theoretical and Applied Physics, 18. https://doi.org/10.57647/j.jtap.2024.si-AICIS23.17
  • Zhang, N.Q., Moran, B., DenBaars, S. P., Mishra, U. K., Wang, X. W., & Ma, T. P. (2001). Kilovolt AlGaN/GaN HEMTs as switching devices. Physica Status Solidi a Applied Research, 188(1), 213-217. https://doi.org/10.1002/1521-396X(200111)188:1<213::AID-PSSA213>3.0.CO;2-8
There are 26 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics, Lasers and Quantum Electronics, General Physics
Journal Section Research Article
Authors

Orkun Sarıarslan 0009-0003-9852-5752

Özlem Bayal 0000-0003-0718-9734

Ahmet Bılgılı 0000-0003-3420-4936

Berna Çatıkkaş 0000-0002-0566-5015

Mustafa Öztürk 0000-0002-8508-5714

Ekmel Özbay 0000-0003-2953-1828

Submission Date September 6, 2025
Acceptance Date November 4, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Sarıarslan, O., Bayal, Ö., Bılgılı, A., … Çatıkkaş, B. (2025). Comparative Structural Analysis of Graded and Standart AlΔXGa1-ΔXN HEMT Devices by Williamson-Hall Method. Gazi University Journal of Science Part A: Engineering and Innovation, 12(4), 1013-1027. https://doi.org/10.54287/gujsa.1779021