Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 1028 - 1043, 31.12.2025
https://doi.org/10.54287/gujsa.1779738

Abstract

References

  • Alemdar, O. S., Oner, M. U., Altun, O., & Keysan, O. (2024). Ripple minimization in asymmetric interleaved dc–dc converters using neural networks. IEEE Transactions on Power Electronics, 39(3), 3411-3421. https://doi.org/10.1109/TPEL.2023.3339699
  • Alyakhni, A., Boulon, L., Vinassa, J. M., & Briat, O. (2021). A comprehensive review on energy management strategies for electric vehicles considering degradation using aging models. IEEE Access, 9, 143922-143940. https://doi.org/10.1109/ACCESS.2021.3120563
  • Bagheri, F., Guler, N., Komurcugil, H., & Bayhan, S. (2023). An adaptive sliding mode control for a dual active bridge converter with extended phase shift modulation. IEEE Access, 11, 91260-91274. https://doi.org/10.1109/ACCESS.2023.3264013
  • Güler, N. (2021). 9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı. Gazi University Journal of Science Part C: Design and Technology, 9(1), 57-70. https://doi.org/10.29109/gujsc.846704
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2021). Robust control of four-phase interleaved boost converter by considering the performance of PEM fuel cell current. International Journal of Hydrogen Energy, 46(78), 38827-38840. https://doi.org/10.1016/j.ijhydene.2021.09.132
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2022). Backstepping supertwisting control of four-phase interleaved boost converter for PEM fuel cell. IEEE Transactions on Power Electronics, 37(7), 7858-7870. https://doi.org/10.1109/TPEL.2022.3149099
  • Hao, X., Salhi, I., Laghrouche, S., Ait Amirat, Y., & Djerdir, A. (2023). Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications. Renewable Energy, 204, 521-531. https://doi.org/10.1016/j.renene.2023.01.021
  • Huangfu, Y., Zhuo, S., Chen, F., Pang, S., Zhao, D., & Gao, F. (2018). Robust voltage control of floating interleaved boost converter for fuel cell systems. IEEE Transactions on Industry Applications, 54(1), 665-674. https://doi.org/10.1109/TIA.2017.2752686
  • Kabalo, M., Paire, D., Blunier, B., Bouquain, D., Godoy Simões, M., & Miraoui, A. (2013). Experimental evaluation of four‐phase floating interleaved boost converter design and control for fuel cell applications. IET Power Electronics, 6(2), 215-226. https://doi.org/10.1049/iet-pel.2012.0221
  • Kolli, A., Gaillard, A., De Bernardinis, A., Bethoux, O., Hissel, D., & Khatir, Z. (2015). A review on DC/DC converter architectures for power fuel cell applications. Energy Conversion and Management, 105, 716-730. https://doi.org/10.1016/j.enconman.2015.07.060
  • Levant, A. (2007). Principles of 2-sliding mode design. Automatica, 43(4), 576-586. https://doi.org/10.1016/j.automatica.2006.10.008
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/j.rser.2011.09.020
  • Mishra, A., Mandal, S., Dieulot, J. Y., Bachute, M., Faizan, M., Pinnarelli, A., Heidari, M., & Soleimani, A. (2025). Non-linear control of interleaved boost converter using disturbance observer-based approach. IEEE Access, 13, 23833-23840. https://doi.org/10.1109/ACCESS.2025.3537826
  • Qie, T., Zhang, X., Xiang, C., Yu, Y., Iu, H. H. C., & Fernando, T. (2024). A novel data-driven large signal stabilizer for interleaved DC/DC boost converter with constant power load. IEEE Transactions on Industrial Electronics, 71(11), 14308-14317. https://doi.org/10.1109/TIE.2024.3370957
  • Sartipizadeh, H., Harirchi, F., Babakmehr, M., & Dehghanian, P. (2021). Robust model predictive control of DC-DC floating interleaved boost converter with multiple uncertainties. IEEE Transactions on Energy Conversion, 36(2), 1403-1412. https://doi.org/10.1109/TEC.2021.3058524
  • Sun, B., & Gao, Z. (2005). A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Transactions on Industrial Electronics, 52(5), 1271-1277. https://doi.org/10.1109/TIE.2005.855679
  • Utkin, V. (2013). Sliding mode control of DC/DC converters. Journal of the Franklin Institute, 350(8), 2146-2165. https://doi.org/10.1016/j.jfranklin.2013.02.026
  • Wang, H., Dong, Y., He, G., & Song, W. (2024). Fixed-time backstepping sliding-mode control for interleaved boost converter in DC microgrids. Energies, 17(21), 5377. https://doi.org/10.3390/en17215377
  • Wang, G., Liu, R., Zhao, N., Ding, D., & Xu, D. (2019). Enhanced linear ADRC strategy for HF pulse voltage signal injection-based sensorless IPMSM drives. IEEE Transactions on Power Electronics, 34(1), 514-525. https://doi.org/10.1109/TPEL.2018.2814056
  • Yenil, V., Özdemir, S., & Ortatepe, Z. (2024). Super Twisting Sliding Mode Control of Four-Phase Interleaved Boost Converter. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 563-576. https://doi.org/10.54287/gujsa.1529271
  • Zhuo, S., Gaillard, A., Xu, L., Bai, H., Paire, D., & Gao, F. (2020a). Enhanced robust control of a DC–DC converter for fuel cell application based on high-order extended state observer. IEEE Transactions on Transportation Electrification, 6(1), 278-287. https://doi.org/10.1109/TTE.2020.2974582
  • Zhuo, S., Gaillard, A., Xu, L., Paire, D., & Gao, F. (2020b). Extended state observer-based control of DC–DC converters for fuel cell application. IEEE Transactions on Power Electronics, 35(9), 9923-9932. https://doi.org/10.1109/TPEL.2020.2974556
  • Zhuo, S., Xu, L., Huangfu, Y., Gaillard, A., Paire, D., & Gao, F. (2021). Robust adaptive control of interleaved boost converter for fuel cell application. IEEE Transactions on Industry Applications, 57(6), 6603-6610. https://doi.org/10.1109/TIA.2021.3113262

Extended State Observer Based Improved Control of Interleaved Boost Converter

Year 2025, Volume: 12 Issue: 4, 1028 - 1043, 31.12.2025
https://doi.org/10.54287/gujsa.1779738

Abstract

The interleaved boost converters used in fuel cell (FC) applications are inevitably affected by disturbances, making output voltage regulation challenging. To address this issue, this paper proposes an improved robust voltage control strategy based on an extended state observer (ESO), which is implemented in interleaved DC-DC converters for FC systems. The super-twisting (ST) algorithm is used to track reference current in the inner loop. In the outer loop design, an ESO based controller is used to ensure output voltage regulation while generating the reference current required for the inner loop. Simulation results are used to verify the performance and robustness of the proposed controller, with comparison against the conventional double-loop PI controller.

References

  • Alemdar, O. S., Oner, M. U., Altun, O., & Keysan, O. (2024). Ripple minimization in asymmetric interleaved dc–dc converters using neural networks. IEEE Transactions on Power Electronics, 39(3), 3411-3421. https://doi.org/10.1109/TPEL.2023.3339699
  • Alyakhni, A., Boulon, L., Vinassa, J. M., & Briat, O. (2021). A comprehensive review on energy management strategies for electric vehicles considering degradation using aging models. IEEE Access, 9, 143922-143940. https://doi.org/10.1109/ACCESS.2021.3120563
  • Bagheri, F., Guler, N., Komurcugil, H., & Bayhan, S. (2023). An adaptive sliding mode control for a dual active bridge converter with extended phase shift modulation. IEEE Access, 11, 91260-91274. https://doi.org/10.1109/ACCESS.2023.3264013
  • Güler, N. (2021). 9-Seviyeli Paket E-Hücreli Eviriciler için Üstün Burulma Algoritması Tabanlı Kayan Kipli Kontrol Tasarımı. Gazi University Journal of Science Part C: Design and Technology, 9(1), 57-70. https://doi.org/10.29109/gujsc.846704
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2021). Robust control of four-phase interleaved boost converter by considering the performance of PEM fuel cell current. International Journal of Hydrogen Energy, 46(78), 38827-38840. https://doi.org/10.1016/j.ijhydene.2021.09.132
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2022). Backstepping supertwisting control of four-phase interleaved boost converter for PEM fuel cell. IEEE Transactions on Power Electronics, 37(7), 7858-7870. https://doi.org/10.1109/TPEL.2022.3149099
  • Hao, X., Salhi, I., Laghrouche, S., Ait Amirat, Y., & Djerdir, A. (2023). Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications. Renewable Energy, 204, 521-531. https://doi.org/10.1016/j.renene.2023.01.021
  • Huangfu, Y., Zhuo, S., Chen, F., Pang, S., Zhao, D., & Gao, F. (2018). Robust voltage control of floating interleaved boost converter for fuel cell systems. IEEE Transactions on Industry Applications, 54(1), 665-674. https://doi.org/10.1109/TIA.2017.2752686
  • Kabalo, M., Paire, D., Blunier, B., Bouquain, D., Godoy Simões, M., & Miraoui, A. (2013). Experimental evaluation of four‐phase floating interleaved boost converter design and control for fuel cell applications. IET Power Electronics, 6(2), 215-226. https://doi.org/10.1049/iet-pel.2012.0221
  • Kolli, A., Gaillard, A., De Bernardinis, A., Bethoux, O., Hissel, D., & Khatir, Z. (2015). A review on DC/DC converter architectures for power fuel cell applications. Energy Conversion and Management, 105, 716-730. https://doi.org/10.1016/j.enconman.2015.07.060
  • Levant, A. (2007). Principles of 2-sliding mode design. Automatica, 43(4), 576-586. https://doi.org/10.1016/j.automatica.2006.10.008
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/j.rser.2011.09.020
  • Mishra, A., Mandal, S., Dieulot, J. Y., Bachute, M., Faizan, M., Pinnarelli, A., Heidari, M., & Soleimani, A. (2025). Non-linear control of interleaved boost converter using disturbance observer-based approach. IEEE Access, 13, 23833-23840. https://doi.org/10.1109/ACCESS.2025.3537826
  • Qie, T., Zhang, X., Xiang, C., Yu, Y., Iu, H. H. C., & Fernando, T. (2024). A novel data-driven large signal stabilizer for interleaved DC/DC boost converter with constant power load. IEEE Transactions on Industrial Electronics, 71(11), 14308-14317. https://doi.org/10.1109/TIE.2024.3370957
  • Sartipizadeh, H., Harirchi, F., Babakmehr, M., & Dehghanian, P. (2021). Robust model predictive control of DC-DC floating interleaved boost converter with multiple uncertainties. IEEE Transactions on Energy Conversion, 36(2), 1403-1412. https://doi.org/10.1109/TEC.2021.3058524
  • Sun, B., & Gao, Z. (2005). A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Transactions on Industrial Electronics, 52(5), 1271-1277. https://doi.org/10.1109/TIE.2005.855679
  • Utkin, V. (2013). Sliding mode control of DC/DC converters. Journal of the Franklin Institute, 350(8), 2146-2165. https://doi.org/10.1016/j.jfranklin.2013.02.026
  • Wang, H., Dong, Y., He, G., & Song, W. (2024). Fixed-time backstepping sliding-mode control for interleaved boost converter in DC microgrids. Energies, 17(21), 5377. https://doi.org/10.3390/en17215377
  • Wang, G., Liu, R., Zhao, N., Ding, D., & Xu, D. (2019). Enhanced linear ADRC strategy for HF pulse voltage signal injection-based sensorless IPMSM drives. IEEE Transactions on Power Electronics, 34(1), 514-525. https://doi.org/10.1109/TPEL.2018.2814056
  • Yenil, V., Özdemir, S., & Ortatepe, Z. (2024). Super Twisting Sliding Mode Control of Four-Phase Interleaved Boost Converter. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 563-576. https://doi.org/10.54287/gujsa.1529271
  • Zhuo, S., Gaillard, A., Xu, L., Bai, H., Paire, D., & Gao, F. (2020a). Enhanced robust control of a DC–DC converter for fuel cell application based on high-order extended state observer. IEEE Transactions on Transportation Electrification, 6(1), 278-287. https://doi.org/10.1109/TTE.2020.2974582
  • Zhuo, S., Gaillard, A., Xu, L., Paire, D., & Gao, F. (2020b). Extended state observer-based control of DC–DC converters for fuel cell application. IEEE Transactions on Power Electronics, 35(9), 9923-9932. https://doi.org/10.1109/TPEL.2020.2974556
  • Zhuo, S., Xu, L., Huangfu, Y., Gaillard, A., Paire, D., & Gao, F. (2021). Robust adaptive control of interleaved boost converter for fuel cell application. IEEE Transactions on Industry Applications, 57(6), 6603-6610. https://doi.org/10.1109/TIA.2021.3113262
There are 23 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other), Power Electronics
Journal Section Research Article
Authors

Veli Yenil 0000-0002-0257-5305

Submission Date September 8, 2025
Acceptance Date December 2, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Yenil, V. (2025). Extended State Observer Based Improved Control of Interleaved Boost Converter. Gazi University Journal of Science Part A: Engineering and Innovation, 12(4), 1028-1043. https://doi.org/10.54287/gujsa.1779738