Research Article
BibTex RIS Cite

Production and Characterization of Bilayer Tissue Scaffolds Prepared with Different Alginate-Salts and Fibroin

Year 2022, Volume: 9 Issue: 2, 120 - 135, 30.06.2022
https://doi.org/10.54287/gujsa.1107158

Abstract

The presented study aimed to design and characterize bilayer Alginate/Fibroin scaffolds to provide faster and higher quality treatment of skin tissue losses with tissue engineering approach. In this context, it was tried to form the dermis and epidermis layers with alginate salts (sodium and calcium) and fibroin with a biomimetic approach, and it was aimed to determine the most suitable alginate salt-fibroin composite scaffold by trying different production methods. The optimum design was determined by macroscopic measurement and dimensional analysis of the scaffolds produced by four different methods and their chemical structures were controlled with FTIR. Among the produced scaffolds, calcium alginate/fibroin (CaAlg/Fb) scaffolds were determined to have the most suitable morphological and chemical structure. With further characterization, the pore distribution and size were examined by SEM analysis and it was determined that surface pore diameters vary from 30 µm to 300 µm which are suitable for cell settlement. The thermal stability of the structure was determined by thermal gravimetry, and the degradation rate was calculated from the thermograms. According to the TG analysis, decomposition of the CaAlg/Fb scaffolds occurs much faster with temperature than homo-biopolymeric (CaAlg and Fb) structures. As a result, it was found that bilayer CaAlg/Fb scaffolds were capable of forming full-thickness dermal and/or also osteochondral wound dressings both morphologically and structurally. It is recommended to perform the tissue forming ability of this scaffold structure by performing advanced biological analyzes.

Supporting Institution

Söz konusu çalışma Kastamonu Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'nce KÜBAP-2015-27 numaralı proje kapsamında kısmen desteklenmiştir.

Project Number

KÜBAP-2015-27

Thanks

The authors would like to thank Kastamonu University Central Research Laboratory Research and Application Center for the infrastructure support they provided in the realization of the study.

References

  • Amiraliyan, N., Nouri, M., & Haghighat Kish, M. (2010). Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polymer Science Series A, 52(4), 407-412. doi:10.1134/S0965545X10040097
  • Bhattacharjee, M., Schultz-Thater, E., Trella, E., Miot, S., Das, S., Loparic, M., Ray, A. R., Martin, I., Spagnoli, G. C., & Ghosh, S. (2013). The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials, 34(33), 8161-8171. doi:10.1016/j.biomaterials.2013.07.018
  • Chen, F.-M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86-168. doi:10.1016/j.progpolymsci.2015.02.004
  • Cheng, Y., Koh, L.-D., Li, D., Ji, B., Han, M.-Y., & Zhang, Y.-W. (2014). On the strength of β-sheet crystallites of Bombyx mori silk fibroin. Journal of the Royal Society Interface, 11(96), 20140305. doi:10.1098/rsif.2014.0305
  • Clark, R. A. F., Ghosh, K., & Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology, 127(5), 1018-1029. doi:10.1038/sj.jid.5700715
  • Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906-924. doi:10.1039/AN9638800906
  • Çakir, B., & Yeğen, B. Ç. (2004). Systemic responses to burn injury. Turkish Journal of Medical Sciences, 34(4), 215-226.
  • Freed, L. E., Marquis, J. C., Langer, R., Vunjak‐Novakovic, G., & Emmanual, J. (1994). Composition of cell‐polymer cartilage implants. Biotechnology and Bioengineering, 43(7), 605-614. doi:10.1002/bit.260430710
  • Ghezzi, C. E., Marelli, B., Donelli, I., Alessandrino, A., Freddi, G., & Nazhat, S. N. (2014). The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen–silk fibroin construct. Biomaterials, 35(24), 6236-6247. doi:10.1016/j.biomaterials.2014.04.040
  • Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A., & Johnson, A. L. (2006). Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007
  • Hardy, J. G., & Scheibel, T. R. (2010). Composite materials based on silk proteins. Progress in Polymer Science, 35(9), 1093-1115. doi:10.1016/j.progpolymsci.2010.04.005
  • Hofmann, S., Stok, K. S., Kohler, T., Meinel, A. J., & Müller, R. (2014). Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomaterialia, 10(1), 308-317. doi:10.1016/j.actbio.2013.08.035
  • Hu, K., Hu, M., Xiao, Y., Cui, Y., Yan, J., Yang, G., Zhang, F., Lin, G., Yi, H., Han, L., Li, L., Wei, Y., & Cui, F. (2021). Preparation recombination human‐like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. Journal of Biomedical Materials Research Part A, 109(3), 346-353. doi:10.1002/jbm.a.37027
  • Hu, X., Kaplan, D., & Cebe, P. (2006). Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161-6170. doi:10.1021/ma0610109
  • Hunt, N. C., Shelton, R. M., & Grover, L. (2009). An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co‐culture. Biotechnology Journal, 4(5), 730-737. doi:10.1002/biot.200800292
  • Jaramillo-Quiceno, N., Álvarez-López, C., & Restrepo-Osorio, A. (2017). Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Engineering, 200, 384-388. doi:10.1016/j.proeng.2017.07.054
  • Ju, H. W., Lee, O. J., Moon, B. M., Sheikh, F. A., Lee, J. M., Kim, J.-H., Park, H. J., Kim, D. W., Lee, M. C., Kim, S. H., Park, C. H., & Lee, H. R. (2014). Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Engineering and Regenerative Medicine, 11(3), 203-210. doi:10.1007/s13770-014-0010-2
  • Kalia, S., & Avérous, L. (2011). Biopolymers: biomedical and environmental applications (Vol. 70). John Wiley & Sons.
  • Kanitakis, J. (2002). Anatomy, histology and immunohistochemistry of normal human skin. European Journal of Dermatology, 12(4), 390-401.
  • Knill, C. J., Kennedy, J. F., Mistry, J., Miraftab, M., Smart, G., Groocock, M. R., & Williams, H. J. (2004). Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydrate Polymers, 55(1), 65-76. doi:10.1016/j.carbpol.2003.08.004
  • Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437
  • Lu, Q., Zhang, B., Li, M., Zuo, B., Kaplan, D. L., Huang, Y., & Zhu, H. (2011). Degradation mechanism and control of silk fibroin. Biomacromolecules, 12(4), 1080-1086. doi:10.1021/bm101422j
  • MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. doi:10.1038/nature05664
  • Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M. A., & Bonakdar, S. (2013). Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials Science and Engineering: C, 33(8), 4786-4794. doi:10.1016/j.msec.2013.07.043
  • Nelson, D. L., & Cox, M. M. (2013). Lehninger Principles of Biochemistry (Y. M. Elçin, Ed. & Trans. from 5th Ed.). Palme. (Original work published 2008).
  • Pamuk, F. (2011). Biyokimya. Gazi Kitabevi.
  • Park, D. H., Choi, W. S., Yoon, S. H., Shim, J. S., & Song, C. H. (2007). A developmental study of artificial skin using the alginate dermal substrate. Key Engineering Materials, 342-343, 125-128. doi:10.4028/www.scientific.net/KEM.342-343.125
  • Peretz, S. (2004). Interaction of alginate with metal ions, cationic surfactants and cationic dyes. Rom. Journal. Phys., 49(9-10), 857-865.
  • Porter, D., & Vollrath, F. (2009). Silk as a biomimetic ideal for structural polymers. Advanced Materials, 21(4), 487-492. doi:10.1002/adma.200801332
  • Priya, S. G., Jungvid, H., & Kumar, A. (2008). Skin tissue engineering for tissue repair and regeneration. Tissue Engineering Part B: Reviews, 14(1), 105-118. doi:10.1089/teb.2007.0318
  • Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.-Y., Kim, I. S., & Zhang, K.-Q. (2017). A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences, 18(3), 237. doi:10.3390/ijms18030237
  • Reinholz, G. G., Lu, L., Saris, D. B. F., Yaszemski, M. J., & O’driscoll, S. W. (2004). Animal models for cartilage reconstruction. Biomaterials, 25(9), 1511-1521. doi:10.1016/S0142-9612(03)00498-8
  • Rujiravanit, R., Kruaykitanon, S., Jamieson, A. M., & Tokura, S. (2003). Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromolecular Bioscience, 3(10), 604-611. doi:10.1002/mabi.200300027
  • Shen, Y., Wang, X., Li, B., Guo, Y., & Dong, K. (2022). Development of silk fibroin‑sodium alginate scaffold loaded silk fibroin nanoparticles for hemostasis and cell adhesion. International Journal of Biological Macromolecules, 211, 514-523. doi:10.1016/j.ijbiomac.2022.05.064
  • Sittinger, M., Bujia, J., Rotter, N., Reitzel, D., Minuth, W. W., & Burmester, G. R. (1996). Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials, 17(3), 237-242. doi:10.1016/0142-9612(96)85561-X
  • Summer, G. J., Puntillo, K. A., Miaskowski, C., Green, P. G., & Levine, J. D. (2007). Burn injury pain: the continuing challenge. The Journal of Pain, 8(7), 533-548. doi:10.1016/j.jpain.2007.02.426
  • Toon, M. H., Maybauer, D. M., Arceneaux, L. L., Fraser, J. F., Meyer, W., Runge, A., & Maybauer, M. O. (2011). Children with burn injuries-assessment of trauma, neglect, violence and abuse. Journal of Injury & Violence Research, 3(2), 98-110. doi:10.5249/jivr.v3i2.91
  • Um, I. C., Kweon, H., Park, Y. H., & Hudson, S. (2001). Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 29(2), 91-97. doi:10.1016/S0141-8130(01)00159-3
  • Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013
  • Wang, X., Partlow, B., Liu, J., Zheng, Z., Su, B., Wang, Y., & Kaplan, D. L. (2015). Injectable silk-polyethylene glycol hydrogels. Acta Biomaterialia, 12, 51-61. doi:10.1016/j.actbio.2014.10.027
  • Woo, W.-M. (2019). Skin Structure and Biology. In: C. Xu, X. Wang, & M. Pramanik (Eds.) Imaging Technologies and Transdermal Delivery in Skin Disorders (pp. 1-14). Wiley. doi:10.1002/9783527814633.ch1
  • Xie, H., Bai, Q., Kong, F., Li, Y., Zha, X., Zhang, L., Zhao, Y., Gao, S., Li, P., & Jiang, Q. (2022). Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International Journal of Biological Macromolecules, 207, 859-872. doi:10.1016/j.ijbiomac.2022.03.147
  • Yodmuang, S., McNamara, S. L., Nover, A. B., Mandal, B. B., Agarwal, M., Kelly, T.-A. N., Chao, P.-h. G., Hung, C., Kaplan, D. L., & Vunjak-Novakovic, G. (2015). Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 11, 27-36. doi:10.1016/j.actbio.2014.09.032
  • Yu, J. R., Navarro, J., Coburn, J. C., Mahadik, B., Molnar, J., Holmes IV, J. H., Nam, A. J., & Fisher, J. P. (2019). Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Advanced Healthcare Materials, 8(5), 1801471. doi:10.1002/adhm.201801471
  • Zhang, K. H., & Mo, X. M. (2011). Influence of Post-treatment with Methanol Vapor on the Properties of SF/P (LLA-CL) Nanofibrous Scaffolds. Advanced Materials Research, 236-238, 2221-2224. doi:10.4028/www.scientific.net/AMR.236-238.2221
  • Zhang, T., Xiong, Q., Shan, Y., Zhang, F., & Lu, S. (2021). Porous Silk Scaffold Derived from Formic Acid: Characterization and Biocompatibility. Advances in Materials Science and Engineering, 2021, 3245587. doi:10.1155/2021/3245587
  • Zhao, M., Qi, Z., Tao, X., Newkirk, C., Hu, X., & Lu, S. (2021). Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. International Journal of Molecular Sciences, 22(8), 4136. doi:10.3390/ijms22084136
Year 2022, Volume: 9 Issue: 2, 120 - 135, 30.06.2022
https://doi.org/10.54287/gujsa.1107158

Abstract

Project Number

KÜBAP-2015-27

References

  • Amiraliyan, N., Nouri, M., & Haghighat Kish, M. (2010). Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polymer Science Series A, 52(4), 407-412. doi:10.1134/S0965545X10040097
  • Bhattacharjee, M., Schultz-Thater, E., Trella, E., Miot, S., Das, S., Loparic, M., Ray, A. R., Martin, I., Spagnoli, G. C., & Ghosh, S. (2013). The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials, 34(33), 8161-8171. doi:10.1016/j.biomaterials.2013.07.018
  • Chen, F.-M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86-168. doi:10.1016/j.progpolymsci.2015.02.004
  • Cheng, Y., Koh, L.-D., Li, D., Ji, B., Han, M.-Y., & Zhang, Y.-W. (2014). On the strength of β-sheet crystallites of Bombyx mori silk fibroin. Journal of the Royal Society Interface, 11(96), 20140305. doi:10.1098/rsif.2014.0305
  • Clark, R. A. F., Ghosh, K., & Tonnesen, M. G. (2007). Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology, 127(5), 1018-1029. doi:10.1038/sj.jid.5700715
  • Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. Analyst, 88(1053), 906-924. doi:10.1039/AN9638800906
  • Çakir, B., & Yeğen, B. Ç. (2004). Systemic responses to burn injury. Turkish Journal of Medical Sciences, 34(4), 215-226.
  • Freed, L. E., Marquis, J. C., Langer, R., Vunjak‐Novakovic, G., & Emmanual, J. (1994). Composition of cell‐polymer cartilage implants. Biotechnology and Bioengineering, 43(7), 605-614. doi:10.1002/bit.260430710
  • Ghezzi, C. E., Marelli, B., Donelli, I., Alessandrino, A., Freddi, G., & Nazhat, S. N. (2014). The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen–silk fibroin construct. Biomaterials, 35(24), 6236-6247. doi:10.1016/j.biomaterials.2014.04.040
  • Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A., & Johnson, A. L. (2006). Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007
  • Hardy, J. G., & Scheibel, T. R. (2010). Composite materials based on silk proteins. Progress in Polymer Science, 35(9), 1093-1115. doi:10.1016/j.progpolymsci.2010.04.005
  • Hofmann, S., Stok, K. S., Kohler, T., Meinel, A. J., & Müller, R. (2014). Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomaterialia, 10(1), 308-317. doi:10.1016/j.actbio.2013.08.035
  • Hu, K., Hu, M., Xiao, Y., Cui, Y., Yan, J., Yang, G., Zhang, F., Lin, G., Yi, H., Han, L., Li, L., Wei, Y., & Cui, F. (2021). Preparation recombination human‐like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. Journal of Biomedical Materials Research Part A, 109(3), 346-353. doi:10.1002/jbm.a.37027
  • Hu, X., Kaplan, D., & Cebe, P. (2006). Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161-6170. doi:10.1021/ma0610109
  • Hunt, N. C., Shelton, R. M., & Grover, L. (2009). An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co‐culture. Biotechnology Journal, 4(5), 730-737. doi:10.1002/biot.200800292
  • Jaramillo-Quiceno, N., Álvarez-López, C., & Restrepo-Osorio, A. (2017). Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Engineering, 200, 384-388. doi:10.1016/j.proeng.2017.07.054
  • Ju, H. W., Lee, O. J., Moon, B. M., Sheikh, F. A., Lee, J. M., Kim, J.-H., Park, H. J., Kim, D. W., Lee, M. C., Kim, S. H., Park, C. H., & Lee, H. R. (2014). Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Engineering and Regenerative Medicine, 11(3), 203-210. doi:10.1007/s13770-014-0010-2
  • Kalia, S., & Avérous, L. (2011). Biopolymers: biomedical and environmental applications (Vol. 70). John Wiley & Sons.
  • Kanitakis, J. (2002). Anatomy, histology and immunohistochemistry of normal human skin. European Journal of Dermatology, 12(4), 390-401.
  • Knill, C. J., Kennedy, J. F., Mistry, J., Miraftab, M., Smart, G., Groocock, M. R., & Williams, H. J. (2004). Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydrate Polymers, 55(1), 65-76. doi:10.1016/j.carbpol.2003.08.004
  • Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502. doi:10.1089/ten.teb.2012.0437
  • Lu, Q., Zhang, B., Li, M., Zuo, B., Kaplan, D. L., Huang, Y., & Zhu, H. (2011). Degradation mechanism and control of silk fibroin. Biomacromolecules, 12(4), 1080-1086. doi:10.1021/bm101422j
  • MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. doi:10.1038/nature05664
  • Mirahmadi, F., Tafazzoli-Shadpour, M., Shokrgozar, M. A., & Bonakdar, S. (2013). Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials Science and Engineering: C, 33(8), 4786-4794. doi:10.1016/j.msec.2013.07.043
  • Nelson, D. L., & Cox, M. M. (2013). Lehninger Principles of Biochemistry (Y. M. Elçin, Ed. & Trans. from 5th Ed.). Palme. (Original work published 2008).
  • Pamuk, F. (2011). Biyokimya. Gazi Kitabevi.
  • Park, D. H., Choi, W. S., Yoon, S. H., Shim, J. S., & Song, C. H. (2007). A developmental study of artificial skin using the alginate dermal substrate. Key Engineering Materials, 342-343, 125-128. doi:10.4028/www.scientific.net/KEM.342-343.125
  • Peretz, S. (2004). Interaction of alginate with metal ions, cationic surfactants and cationic dyes. Rom. Journal. Phys., 49(9-10), 857-865.
  • Porter, D., & Vollrath, F. (2009). Silk as a biomimetic ideal for structural polymers. Advanced Materials, 21(4), 487-492. doi:10.1002/adma.200801332
  • Priya, S. G., Jungvid, H., & Kumar, A. (2008). Skin tissue engineering for tissue repair and regeneration. Tissue Engineering Part B: Reviews, 14(1), 105-118. doi:10.1089/teb.2007.0318
  • Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.-Y., Kim, I. S., & Zhang, K.-Q. (2017). A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. International Journal of Molecular Sciences, 18(3), 237. doi:10.3390/ijms18030237
  • Reinholz, G. G., Lu, L., Saris, D. B. F., Yaszemski, M. J., & O’driscoll, S. W. (2004). Animal models for cartilage reconstruction. Biomaterials, 25(9), 1511-1521. doi:10.1016/S0142-9612(03)00498-8
  • Rujiravanit, R., Kruaykitanon, S., Jamieson, A. M., & Tokura, S. (2003). Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromolecular Bioscience, 3(10), 604-611. doi:10.1002/mabi.200300027
  • Shen, Y., Wang, X., Li, B., Guo, Y., & Dong, K. (2022). Development of silk fibroin‑sodium alginate scaffold loaded silk fibroin nanoparticles for hemostasis and cell adhesion. International Journal of Biological Macromolecules, 211, 514-523. doi:10.1016/j.ijbiomac.2022.05.064
  • Sittinger, M., Bujia, J., Rotter, N., Reitzel, D., Minuth, W. W., & Burmester, G. R. (1996). Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials, 17(3), 237-242. doi:10.1016/0142-9612(96)85561-X
  • Summer, G. J., Puntillo, K. A., Miaskowski, C., Green, P. G., & Levine, J. D. (2007). Burn injury pain: the continuing challenge. The Journal of Pain, 8(7), 533-548. doi:10.1016/j.jpain.2007.02.426
  • Toon, M. H., Maybauer, D. M., Arceneaux, L. L., Fraser, J. F., Meyer, W., Runge, A., & Maybauer, M. O. (2011). Children with burn injuries-assessment of trauma, neglect, violence and abuse. Journal of Injury & Violence Research, 3(2), 98-110. doi:10.5249/jivr.v3i2.91
  • Um, I. C., Kweon, H., Park, Y. H., & Hudson, S. (2001). Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. International Journal of Biological Macromolecules, 29(2), 91-97. doi:10.1016/S0141-8130(01)00159-3
  • Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013
  • Wang, X., Partlow, B., Liu, J., Zheng, Z., Su, B., Wang, Y., & Kaplan, D. L. (2015). Injectable silk-polyethylene glycol hydrogels. Acta Biomaterialia, 12, 51-61. doi:10.1016/j.actbio.2014.10.027
  • Woo, W.-M. (2019). Skin Structure and Biology. In: C. Xu, X. Wang, & M. Pramanik (Eds.) Imaging Technologies and Transdermal Delivery in Skin Disorders (pp. 1-14). Wiley. doi:10.1002/9783527814633.ch1
  • Xie, H., Bai, Q., Kong, F., Li, Y., Zha, X., Zhang, L., Zhao, Y., Gao, S., Li, P., & Jiang, Q. (2022). Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. International Journal of Biological Macromolecules, 207, 859-872. doi:10.1016/j.ijbiomac.2022.03.147
  • Yodmuang, S., McNamara, S. L., Nover, A. B., Mandal, B. B., Agarwal, M., Kelly, T.-A. N., Chao, P.-h. G., Hung, C., Kaplan, D. L., & Vunjak-Novakovic, G. (2015). Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 11, 27-36. doi:10.1016/j.actbio.2014.09.032
  • Yu, J. R., Navarro, J., Coburn, J. C., Mahadik, B., Molnar, J., Holmes IV, J. H., Nam, A. J., & Fisher, J. P. (2019). Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Advanced Healthcare Materials, 8(5), 1801471. doi:10.1002/adhm.201801471
  • Zhang, K. H., & Mo, X. M. (2011). Influence of Post-treatment with Methanol Vapor on the Properties of SF/P (LLA-CL) Nanofibrous Scaffolds. Advanced Materials Research, 236-238, 2221-2224. doi:10.4028/www.scientific.net/AMR.236-238.2221
  • Zhang, T., Xiong, Q., Shan, Y., Zhang, F., & Lu, S. (2021). Porous Silk Scaffold Derived from Formic Acid: Characterization and Biocompatibility. Advances in Materials Science and Engineering, 2021, 3245587. doi:10.1155/2021/3245587
  • Zhao, M., Qi, Z., Tao, X., Newkirk, C., Hu, X., & Lu, S. (2021). Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. International Journal of Molecular Sciences, 22(8), 4136. doi:10.3390/ijms22084136
There are 47 citations in total.

Details

Primary Language English
Journal Section Biomedical Engineering
Authors

Özge Çelik This is me 0000-0001-5186-0519

Salma A. Taher Mohamed This is me 0000-0002-6210-9920

Nuray Emin 0000-0002-0859-2536

Project Number KÜBAP-2015-27
Publication Date June 30, 2022
Submission Date April 21, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Çelik, Ö., Mohamed, S. A. T., & Emin, N. (2022). Production and Characterization of Bilayer Tissue Scaffolds Prepared with Different Alginate-Salts and Fibroin. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 120-135. https://doi.org/10.54287/gujsa.1107158