Year 2022,
Volume: 9 Issue: 3, 276 - 286, 30.09.2022
Suleyman Adak
,
Hasan Cangi
,
Rıdvan Kaya
,
Ahmet Serdar Yılmaz
References
- Ashique, R. H., Salam, Z., Bin Abdul Aziz, M. J., & Bhatti, A. R. (2017). Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renewable and Sustainable Energy Reviews, 69, 1243-1257. doi:10.1016/j.rser.2016.11.245
- Erhan, K., Ayaz, M., & Özdemir, E. (2013). Elektrikli Araç Şarj İstasyonlarının Güç Kalitesi Üzerine Etkileri - Impact of Charging Stations for Electric Vehicles on Power Quality. In: Akıllı Şebekeler ve Türkiye Elektrik Şebekesinin Geleceği Sempozyumu, (pp.1-5).
- Diaz, C., Ruiz, F., & Patino, D. (2018). Smart Charge of an Electric Vehicles Station: A Model Predictive Control Approach. In: IEEE Conference on Control Technology and Applications (CCTA 2018), (pp. 54-59), doi:10.1109/CCTA.2018.8511498
- Fathabadi, H. (2015). Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems. Energy, 90(1), 1100-1110. doi:10.1016/j.energy.2015.06.063
- Khooban, M. H., Niknam, T., Blaabjerg, F., & Dragičević, T. (2017). A new load frequency control strategy for micro-grids with considering electrical vehicles. Electric Power Systems Research, 143, 585-598. doi:10.1016/j.epsr.2016.10.057
- Izgi, E., Öztopal, A., Yerli, B., Kaymak, M. K., & Şahin, A. D. (2012). Short–mid-term solar power prediction by using artificial neural networks. Solar Energy, 86(2), 725-733. doi:10.1016/j.solener.2011.11.013
- Kong, W., Luo, Y., Feng, G., Li, K., & Peng, H. (2019). Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid. Energy, 186, 115826. doi:10.1016/j.energy.2019.07.156
- Lee, B.-K., Kim, J.-P., Kim, S.-G., & Lee, J.-Y. (2017). An isolated/bidirectional PWM resonant converter for V2G (H) EV On-Board charger, IEEE Transactions on Vehicular Technology, 66(9), 7741-7750, doi:10.1109/TVT.2017.2678532
- Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648-661. doi:10.1016/j.rser.2015.06.036
- Chandra Mouli, G. R., Bauer, P., & Zeman, M. (2016). System design for a solar powered electric vehicle charging station for workplaces, Applied Energy, 168, 434-443. doi:10.1016/j.apenergy.2016.01.110
- Özçelik, M. A., Utma, A. & Yılmaz, A. S. (2019). Micro PV/Wind hybrid based smart energy management system . The International Journal of Materials and Engineering Technology, 2(2), 54-59.
- Rüstemli, S., Okuducu, E., Almalı, M.N., & Efe, S. B. (2015). Reducing the Effects of Harmonics on the Electrical Power Systems with Passive Filters. Bitlis Eren University Journal of Science and Technology, 5(1), 1-10. doi:10.17678/beujst.57339
- Yapıcı, R., Güneş, D., & Yörükeren, N. (2016). Elektrikli Şarj İstasyonlarının Dağıtım Şebekesine Olası Etkileri. 21-27. PDF
- Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Selvaraj, J. (2018). Experimental Validation of a Three-Phase Off-Board Electric Vehicle Charger With New Power Grid Voltage Control. IEEE Transactions on Smart Grid, 9(4), 2703-2713. doi:10.1109/TSG.2016.2617400
Effects of Electric Vehicles and Charging Stations on Microgrid Power Quality
Year 2022,
Volume: 9 Issue: 3, 276 - 286, 30.09.2022
Suleyman Adak
,
Hasan Cangi
,
Rıdvan Kaya
,
Ahmet Serdar Yılmaz
Abstract
In this study, integration of renewable energy sources and Electric Vehicles (EVs) into a micro-grid was modeled and analyzed. The microgrid is divided into four important parts; a diesel generator, acting as the base power generator; a photovoltaic (PV) farm combined with a wind farm, to produce electrical energy; a vehicle to grid (V2G) system installed next to the last part of the microgrid which is the load of the microgrid. The size of the microgrid represents approximately a community of a thousand households during a low consumption day in spring or fall. There are 100 electric vehicles in the base model which means that there is a 1:10 ratio between the cars and the households. This is a possible scenario in a foreseeable future. The continuous increase in their rate in energy production makes micro-grids important. Microgrids can be designed to meet the energy needs of hospitals, universities or charging stations of electric cars, as well as to meet the energy needs of a district, village or industrial site. Charging stations are needed to charge the electric vehicle battery. In this study, the effects of electric vehicles on the microgrid network are analyzed. Electric vehicles have non-linear circuit elements in their structures. Therefore, they are a source of harmonic current in the microgrid. They negatively affect the power quality of the microgrid. The battery in electric vehicles is charged with direct current. The alternating current from the microgrid needs to be converted to direct current.
References
- Ashique, R. H., Salam, Z., Bin Abdul Aziz, M. J., & Bhatti, A. R. (2017). Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renewable and Sustainable Energy Reviews, 69, 1243-1257. doi:10.1016/j.rser.2016.11.245
- Erhan, K., Ayaz, M., & Özdemir, E. (2013). Elektrikli Araç Şarj İstasyonlarının Güç Kalitesi Üzerine Etkileri - Impact of Charging Stations for Electric Vehicles on Power Quality. In: Akıllı Şebekeler ve Türkiye Elektrik Şebekesinin Geleceği Sempozyumu, (pp.1-5).
- Diaz, C., Ruiz, F., & Patino, D. (2018). Smart Charge of an Electric Vehicles Station: A Model Predictive Control Approach. In: IEEE Conference on Control Technology and Applications (CCTA 2018), (pp. 54-59), doi:10.1109/CCTA.2018.8511498
- Fathabadi, H. (2015). Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems. Energy, 90(1), 1100-1110. doi:10.1016/j.energy.2015.06.063
- Khooban, M. H., Niknam, T., Blaabjerg, F., & Dragičević, T. (2017). A new load frequency control strategy for micro-grids with considering electrical vehicles. Electric Power Systems Research, 143, 585-598. doi:10.1016/j.epsr.2016.10.057
- Izgi, E., Öztopal, A., Yerli, B., Kaymak, M. K., & Şahin, A. D. (2012). Short–mid-term solar power prediction by using artificial neural networks. Solar Energy, 86(2), 725-733. doi:10.1016/j.solener.2011.11.013
- Kong, W., Luo, Y., Feng, G., Li, K., & Peng, H. (2019). Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid. Energy, 186, 115826. doi:10.1016/j.energy.2019.07.156
- Lee, B.-K., Kim, J.-P., Kim, S.-G., & Lee, J.-Y. (2017). An isolated/bidirectional PWM resonant converter for V2G (H) EV On-Board charger, IEEE Transactions on Vehicular Technology, 66(9), 7741-7750, doi:10.1109/TVT.2017.2678532
- Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648-661. doi:10.1016/j.rser.2015.06.036
- Chandra Mouli, G. R., Bauer, P., & Zeman, M. (2016). System design for a solar powered electric vehicle charging station for workplaces, Applied Energy, 168, 434-443. doi:10.1016/j.apenergy.2016.01.110
- Özçelik, M. A., Utma, A. & Yılmaz, A. S. (2019). Micro PV/Wind hybrid based smart energy management system . The International Journal of Materials and Engineering Technology, 2(2), 54-59.
- Rüstemli, S., Okuducu, E., Almalı, M.N., & Efe, S. B. (2015). Reducing the Effects of Harmonics on the Electrical Power Systems with Passive Filters. Bitlis Eren University Journal of Science and Technology, 5(1), 1-10. doi:10.17678/beujst.57339
- Yapıcı, R., Güneş, D., & Yörükeren, N. (2016). Elektrikli Şarj İstasyonlarının Dağıtım Şebekesine Olası Etkileri. 21-27. PDF
- Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Selvaraj, J. (2018). Experimental Validation of a Three-Phase Off-Board Electric Vehicle Charger With New Power Grid Voltage Control. IEEE Transactions on Smart Grid, 9(4), 2703-2713. doi:10.1109/TSG.2016.2617400