Research Article
BibTex RIS Cite

Heat Transfer Analysis of a Concentrated-Type Solar Dryer for Ginger

Year 2024, Volume: 11 Issue: 4, 690 - 700, 30.12.2024
https://doi.org/10.54287/gujsa.1538840

Abstract

In recent years, global concern about the preservation of agricultural products for usage and exports through drying has been outstanding. Solar Parabolic Trough Collectors (SPTC) are used to dry various agricultural products for effective moisture removal. A heat transfer fluid (HTF) flows through a receiver tube pipe that absorbs solar radiation reflected from the stainless-steel sheet surfaces of the SPTC. In order to reduce the heat losses, the pipe was linked through a flexible, thermally insulated cross-linked polyethene pipe to the copper tubes inside the drying chamber. The heat transfer analysis of the SPTC is essential to understand the thermal behavior and its performance during the drying process. This paper examined the heat exchanges developed in the designed concentrated-type solar dryer, and the heat transfer rates in the receiver tube and the drying chamber, as well as the heat transfer coefficients for the solar drying of ginger, were determined. The thermal analysis of the convective heat exchanges within the receiver tube and the drying chamber is presented. The heat transfer coefficients hRec and hDC for the convective heat transfer process in the receiver tube and the drying chamber were 1372.48W/m.K and 17.60W/m.K, respectively. The dryer’s thermal efficiency was 30%, showing considerable moisture removal from the ginger samples. The mean temperature difference between the drying chamber and the ambient showed a considerable increase of about +11oC. This resulted in considerable moisture removal, and the final moisture content achieved by the concentrated solar dryer for the ginger samples was 11.1%, compared to the 23.74% achieved by the open-air solar (OAS) drying method.

References

  • Alimohammadi, Z., Samimi Akhijahani, H., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177. https://doi.org/10.1016/j.solener.2020.02.079
  • Augustus Leon, M., Kumar, S., & Bhattacharya, S. C. (2002). A comprehensive procedure for performance evaluation of solar food dryers. Renewable and Sustainable. Energy Reviews, 6(4), 367-393. https://doi.org/10.1016/S1364-0321(02)00005-9
  • Bhavsar, H., & Patel, C. M. (2023). Performance analysis of cabinet type solar dryer for ginger drying with & without thermal energy storage material. Materials Today: Proceedings, 73, 595-603. https://doi.org/10.1016/j.matpr.2022.11.280
  • de Oliveira Siqueira, A. M., Gomes, P. E. N., Torrezani, L., Lucas, E. O., & Pereira, G. M. da C. (2014). Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Collector: An Analysis. Energy Procedia ,57, 401-410. https://doi.org/10.1016/j.egypro.2014.10.193
  • Ebewele, R. O., & Jimoh, A. A. (1981). Feasibility Study of Kaduna State Ginger Processing Industry. Nigeria: Ahmadu Bello University Chemical Engineering Consultant.
  • Ekechukwu, O. V. (2010, May 16-19). Solar Drying Technology: An Overview. In: Proceedings of the FUTO Alternative Energy Conference, Federal University of Technology, Owerri, Nigeria.
  • Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion and Management, 40(6), 615-655. https://doi.org/10.1016/S0196-8904(98)00093-4
  • Fumen, G. A., Yiljep, Y. D., & Ajisegiri, E. S. A. (2003, September 8-12). Survey of ginger processing and drying methods in Nigeria: A case of Southern Kaduna of Kaduna State. In: Proceedings of the Fourth International Conference and 25th AGM of the Nigeria Institution of Agricultural Engineers, Damaturu, Nigeria.
  • Gucheman (2010). Focusing on Export of Ginger (Zingiber Officinale) Produce from Nigeria. (Accessed: 27/11/2015) http://www.gucheman.com/mitsue-stanley
  • Gyawali, M., Acharya, A., Adhikari, T., Dahal, K., Kafle, B., Kim, D. H., & Kafle, S. (2022). A mixed-mode ginger and turmeric solar dryer: design, simulation, biochemical and performance analysis. BIBECHANA, 19(1-2), 40-60. https://doi.org/10.3126/bibechana.v19i1-2.46386
  • Lienhard IV, J. H., & Lienhard V, J. H. (2002). A heat transfer Textbook (3rd Ed.). Massachusetts: Phlogiston Press.
  • Njoku, B. O. Mbanaso, E. N. A., & Asumugha, G. N. (1995). Ginger Production by Conventional and Tissue Culture Techniques. Dolf publishers, Owerri, Imo State, pp. 9-12.
  • Okafor, G. I. (2002). Processing and Utilization of Ginger: Effect of Processing Methods on Product Quality, and its Application in Fruit and Bakery Products. TWAS-CSRI postdoctoral fellowship research report, CFTRI, India (2002), p. 32
  • Ouedraogo, G. W. P., Kaboré, B., Magloire Pakouzou, B., Sawadogo, K., Zoma, V., Kam, S., & Joseph Bathiébo, D. (2021). Thermal Analysis of a Solar Dryer with Parabolic Collector. Science Research, 9(6), 127-131. https://doi.org/10.11648/j.sr.20210906.15
  • Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097-5110. https://doi.org/10.1016/j.apenergy.2011.07.012
  • Plappally, A. K., & Lienhard V, J. H. (2012). Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews, 16(7), 4818-4848. https://doi.org/10.1016/j.rser.2012.05.022
  • Rulazi, E. L., Marwa, J., Kichonge, B., & Kivevele, T. (2023). Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products. ACS Omega, 8(45), 43304-43317. https://doi.org/10.1021/acsomega.3c07314
  • Sansaniwal, S. K., & Kumar, M. (2015). Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study. Journal of Mechanical Engineering and Sciences, 9, 1671-1685. http://doi.org/10.15282/jmes.9.2015.13.0161
  • Sharma, A., Chen, C. R., & Vu Lan, N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13(6-7), 1185-1210. https://doi.org/10.1016/j.rser.2008.08.015
  • Shukla, S., & Sahu, Prof. H. S. (2019). Analysis of Heat Transfer for Solar Air Heater – A Perspective View. International Journal of Trend in Scientific Research and Development, 3(2), 1054-1058. https://doi.org/10.31142/ijtsrd21612
  • Tagle-Salazar, P. D., Nigam, K. D. P., & Rivera-Solorio, C. I. (2018). Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renewable Energy, 125, 334-343. https://doi.org/10.1016/j.renene.2018.02.069
  • Tiris, C., Tiris, M., & Dincer, I. (1995). Investigation of the thermal efficiencies of a solar dryer. Energy Conversion and Management, 36(3), 205-212. https://doi.org/10.1016/0196-8904(94)00051-Z
  • Youcef-Ali, S., Messaoudi, H., Desmons, J. Y., Abene, A., & Le Ray, M. (2001). Determination of the average coefficient of internal moisture transfer during the drying of a thin bed of potato slices. Journal of Food Engineering, 48(2), 95-101. https://doi.org/10.1016/S0260-8774(00)00123-0
Year 2024, Volume: 11 Issue: 4, 690 - 700, 30.12.2024
https://doi.org/10.54287/gujsa.1538840

Abstract

References

  • Alimohammadi, Z., Samimi Akhijahani, H., & Salami, P. (2020). Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy, 201, 157-177. https://doi.org/10.1016/j.solener.2020.02.079
  • Augustus Leon, M., Kumar, S., & Bhattacharya, S. C. (2002). A comprehensive procedure for performance evaluation of solar food dryers. Renewable and Sustainable. Energy Reviews, 6(4), 367-393. https://doi.org/10.1016/S1364-0321(02)00005-9
  • Bhavsar, H., & Patel, C. M. (2023). Performance analysis of cabinet type solar dryer for ginger drying with & without thermal energy storage material. Materials Today: Proceedings, 73, 595-603. https://doi.org/10.1016/j.matpr.2022.11.280
  • de Oliveira Siqueira, A. M., Gomes, P. E. N., Torrezani, L., Lucas, E. O., & Pereira, G. M. da C. (2014). Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Collector: An Analysis. Energy Procedia ,57, 401-410. https://doi.org/10.1016/j.egypro.2014.10.193
  • Ebewele, R. O., & Jimoh, A. A. (1981). Feasibility Study of Kaduna State Ginger Processing Industry. Nigeria: Ahmadu Bello University Chemical Engineering Consultant.
  • Ekechukwu, O. V. (2010, May 16-19). Solar Drying Technology: An Overview. In: Proceedings of the FUTO Alternative Energy Conference, Federal University of Technology, Owerri, Nigeria.
  • Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion and Management, 40(6), 615-655. https://doi.org/10.1016/S0196-8904(98)00093-4
  • Fumen, G. A., Yiljep, Y. D., & Ajisegiri, E. S. A. (2003, September 8-12). Survey of ginger processing and drying methods in Nigeria: A case of Southern Kaduna of Kaduna State. In: Proceedings of the Fourth International Conference and 25th AGM of the Nigeria Institution of Agricultural Engineers, Damaturu, Nigeria.
  • Gucheman (2010). Focusing on Export of Ginger (Zingiber Officinale) Produce from Nigeria. (Accessed: 27/11/2015) http://www.gucheman.com/mitsue-stanley
  • Gyawali, M., Acharya, A., Adhikari, T., Dahal, K., Kafle, B., Kim, D. H., & Kafle, S. (2022). A mixed-mode ginger and turmeric solar dryer: design, simulation, biochemical and performance analysis. BIBECHANA, 19(1-2), 40-60. https://doi.org/10.3126/bibechana.v19i1-2.46386
  • Lienhard IV, J. H., & Lienhard V, J. H. (2002). A heat transfer Textbook (3rd Ed.). Massachusetts: Phlogiston Press.
  • Njoku, B. O. Mbanaso, E. N. A., & Asumugha, G. N. (1995). Ginger Production by Conventional and Tissue Culture Techniques. Dolf publishers, Owerri, Imo State, pp. 9-12.
  • Okafor, G. I. (2002). Processing and Utilization of Ginger: Effect of Processing Methods on Product Quality, and its Application in Fruit and Bakery Products. TWAS-CSRI postdoctoral fellowship research report, CFTRI, India (2002), p. 32
  • Ouedraogo, G. W. P., Kaboré, B., Magloire Pakouzou, B., Sawadogo, K., Zoma, V., Kam, S., & Joseph Bathiébo, D. (2021). Thermal Analysis of a Solar Dryer with Parabolic Collector. Science Research, 9(6), 127-131. https://doi.org/10.11648/j.sr.20210906.15
  • Padilla, R. V., Demirkaya, G., Goswami, D. Y., Stefanakos, E., & Rahman, M. M. (2011). Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 88(12), 5097-5110. https://doi.org/10.1016/j.apenergy.2011.07.012
  • Plappally, A. K., & Lienhard V, J. H. (2012). Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews, 16(7), 4818-4848. https://doi.org/10.1016/j.rser.2012.05.022
  • Rulazi, E. L., Marwa, J., Kichonge, B., & Kivevele, T. (2023). Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products. ACS Omega, 8(45), 43304-43317. https://doi.org/10.1021/acsomega.3c07314
  • Sansaniwal, S. K., & Kumar, M. (2015). Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study. Journal of Mechanical Engineering and Sciences, 9, 1671-1685. http://doi.org/10.15282/jmes.9.2015.13.0161
  • Sharma, A., Chen, C. R., & Vu Lan, N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13(6-7), 1185-1210. https://doi.org/10.1016/j.rser.2008.08.015
  • Shukla, S., & Sahu, Prof. H. S. (2019). Analysis of Heat Transfer for Solar Air Heater – A Perspective View. International Journal of Trend in Scientific Research and Development, 3(2), 1054-1058. https://doi.org/10.31142/ijtsrd21612
  • Tagle-Salazar, P. D., Nigam, K. D. P., & Rivera-Solorio, C. I. (2018). Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renewable Energy, 125, 334-343. https://doi.org/10.1016/j.renene.2018.02.069
  • Tiris, C., Tiris, M., & Dincer, I. (1995). Investigation of the thermal efficiencies of a solar dryer. Energy Conversion and Management, 36(3), 205-212. https://doi.org/10.1016/0196-8904(94)00051-Z
  • Youcef-Ali, S., Messaoudi, H., Desmons, J. Y., Abene, A., & Le Ray, M. (2001). Determination of the average coefficient of internal moisture transfer during the drying of a thin bed of potato slices. Journal of Food Engineering, 48(2), 95-101. https://doi.org/10.1016/S0260-8774(00)00123-0
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Mechanical Engineering
Authors

Ige Bori 0000-0001-7001-094X

Jonathan Yisa Jiya 0009-0008-7166-7044

Adamu Mohammed Orah 0000-0001-6778-8443

Sunday Bako 0000-0003-2348-1217

Muideen Oladele Oyebamiji 0009-0002-8060-5239

Publication Date December 30, 2024
Submission Date August 26, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Bori, I., Jiya, J. Y., Orah, A. M., Bako, S., et al. (2024). Heat Transfer Analysis of a Concentrated-Type Solar Dryer for Ginger. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 690-700. https://doi.org/10.54287/gujsa.1538840