Research Article
BibTex RIS Cite

Experimental Study on Gasification of Banknote Waste: Effects of Torrefaction Pre-Treatment and Co-Gasification on Producer Gas Composition

Year 2024, Volume: 11 Issue: 4, 801 - 813, 30.12.2024
https://doi.org/10.54287/gujsa.1552835

Abstract

There is approximately 500,000 tonnes of potential end-of-life banknote waste worldwide, which is increasing by 2-3% per year. This waste consists of cotton and polymer-based banknotes printed on substrates whose raw materials are cotton and polypropylene, respectively. The vast majority of banknotes in circulation are cotton-based banknotes. End-of-life cotton banknotes, which are lignocellulosic biomass, are generally disposed of by landfill and incineration. Studies to reduce the environmental impact of these wastes to find more effective ways of using them is becoming increasingly important. Syngas, which can be used for the production of electricity, energy and chemicals is obtained by gasification of end-of-life cotton banknotes. In this study, DSC and FTIR analysis were performed as part of the characterization tests of the cotton-based banknote sample. As a result of the analysis, the sample was found to have characteristics similar to those of cotton. Within the scope of the investigation of thermal decomposition kinetics, activation energies were calculated as 134-171 kJ/mol by the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. Experiments were performed in a fluidized-bed reactor at 800°C with an inlet H2O/O2 ratio of 25. The content of the producer gas formed during gasification was examined according to the maximum mole fraction achieved. In order to facilitate handling, storage and transportation and to improve fuel quality, the effect of torrefaction pre-treatment on the producer gas content was studied by conducting torrefaction to the cotton-based banknote sample at 250°C for 10 min. To overcome the disadvantages of plastic gasification in terms of operational sustainability, the cotton and polymer-based banknote samples were co-gasified. With the torrefaction pre-treatment, the mole fractions of H2, CO and CH4 increased, while the mole fraction of CO2 decreased. This finding revealed the effects of Boudouard, hydrogasification, water-gas and steam reformation reactions. With the co-gasification of cotton and polymer-based banknote samples, H2, CO and CO2 mole fractions decreased while CH4 mole fraction increased. This result showed that as the proportion of polymer-based banknote samples in the feedstock increased, the conversion efficiency decreased and the hydrogasification reaction became dominant.

References

  • Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2024). Experimental analysis of the effects of feedstock composition on the plastic and biomass co-gasification process. Renewable Energy, 231, 120960. https://doi.org/10.1016/j.renene.2024.120960
  • Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. https://doi.org/10.1016/j.rser.2014.07.129
  • Block, C., Ephraim, A., Weiss-Hortala, E., Minh, D. P., Nzihou, A., & Vandecasteele, C. (2018). Co-pyrogasification of plastics and biomass, a Review. Waste and Biomass Valorization, 10(3), 483-509. https://doi.org/10.1007/s12649-018-0219-8
  • BoC. (2011). Life cycle assessment of Canada’s polymer bank notes and cotton-paper bank notes final report. Bank of Canada.
  • BoI. (2023). Environment Report 2023. Bank of Italy.
  • Cabuk, B., Duman, G., Yanik, J., & Olgun, H. (2020). Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. International Journal of Hydrogen Energy, 45(5), 3435-3443. https://doi.org/10.1016/j.ijhydene.2019.02.130
  • Chan, Y. H., Cheah, K. W., How, B. S., Loy, A. C. M., Shahbaz, M., Singh, H. K. G., Yusuf, N. R., Shuhaili, A. F. A., Yusup, S., Ghani, W. A. W. A. K. G., Rambli, J., Kansha, Y., Lam, H. L., Hong, B. H., & Ngan, S. L. (2019). An overview of biomass thermochemical conversion technologies in Malaysia. The Science of the Total Environment, 680, 105-123. https://doi.org/10.1016/j.scitotenv.2019.04.211
  • Corradini, E., Teixeira, E. M., Paladin, P. D., Agnelli, J. A., Silva, O. R. R. F., & Mattoso, L. H. C. (2009). Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 97(2), 415-419. https://doi.org/10.1007/s10973-008-9693-8
  • Das, B., Bhattacharya, A., & Datta, A. (2020). Kinetic modeling of biomass gasification and tar formation in a fluidized bed gasifier using equivalent reactor network (ERN). Fuel, 280, 118582. https://doi.org/10.1016/j.fuel.2020.118582
  • DLR. (2022). Annual Report 2022. De La Rue plc.
  • DLR. (2023). Annual Report 2023. De La Rue plc.
  • ECB. (2023). Product Environmental Footprint study of euro banknotes as a payment instrument. European Central Bank.
  • Elbersen, W., Lammens, T. M., Alakangas, E. A., Annevelink, B., Harmsen, P., & Elbersen, B. (2017). Lignocellulosic Biomass Quality: Matching Characteristics With Biomass Conversion Requirements. In: C. Panoutsou (Eds.), Modeling and Optimization of Biomass Supply Chains, (pp. 55-78). https://doi.org/10.1016/b978-0-12-812303-4.00003-3
  • George, J., Arun, P., & Muraleedharan, C. (2019). Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. Journal of the Energy Institute, 92(6), 1977-1986. https://doi.org/10.1016/j.joei.2018.10.014
  • G+D (2024). Number of Banknotes in circulation worldwide (Accessed:01/09/2024) https://www.gi-de.com/en/currency-technology/banknote-solutions/banknote-production/banknote-printing
  • Hanchate, N., Ramani, S., Mathpati, C., & Dalvi, V. H. (2021). Biomass gasification using dual fluidized bed gasification systems: A review. Journal of Cleaner Production, 280, 123148. https://doi.org/10.1016/j.jclepro.2020.123148
  • Hanegraaf, R., Larçin, A., Jonker, N., Mandley, S., & Miedema, J. (2019). Life cycle assessment of cash payments in the Netherlands. The International Journal of Life Cycle Assessment, 25(1), 120-140. https://doi.org/10.1007/s11367-019-01637-3
  • He, Z., Liu, Y., Kim, H. J., Tewolde, H., & Zhang, H. (2022). Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research, 5(1). https://doi.org/10.1186/s42397-022-00117-8
  • Huang, J., Zhang, H., Tan, Q., Li, L., Xu, R., Xu, Z., & Li, X. (2021). Enhanced conversion of CO2 into O2-free fuel gas via the Boudouard reaction with biochar in an atmospheric plasmatron. Journal of CO2 Utilization, 45, 101429. https://doi.org/10.1016/j.jcou.2020.101429
  • Hussain, M., Ali, O., Raza, N., Zabiri, H., Ahmed, A., & Ali, I. (2023). Recent advances in dynamic modeling and control studies of biomass gasification for production of hydrogen rich syngas. RSC Advances, 13(34), 23796-23811. https://doi.org/10.1039/d3ra01219k
  • IEA. (2021). Energy supply (Accessed:01/09/2024) https://www.iea.org/world/energy-mix
  • IEA. (2023). World Energy Outlook 2023. International Energy Agency.
  • Jahromi, R., Rezaei, M., Samadi, S. H., & Jahromi, H. (2021). Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science, 231, 116249. https://doi.org/10.1016/j.ces.2020.116249
  • K&B (2022). Annual increase trend in banknote production (Accessed:01/09/2024) https://www.koenig-bauer.com/en/news/details/article/90-of-the-worlds-banknotes-are-swiss-1
  • Kavuştu, H., & Şimşek, E. H. (2023). Characterization and gasification of end-of-life banknotes rich in cotton content. Waste Management, 171, 473-481. https://doi.org/10.1016/j.wasman.2023.09.034
  • Kavuştu, H. (2024). Gasification of end-of-life banknotes rich in cotton content in a fluidized bed reactor and modelling (in Turkish). PhD Thesis, Ankara University.
  • Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. https://doi.org/10.3390/en20300556
  • Luján-Ornelas, C., del C Sternenfels, U. M., & Güereca, L. P. (2018). Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes. The Science of the Total Environment, 630, 409-421. https://doi.org/10.1016/j.scitotenv.2018.02.177
  • Mancilla-Leytón, J., Fernández-Rodríguez, M., De La Lama-Calvente, D., & Borja, R. (2024). Evaluation of batch mesophilic anaerobic digestion of waste Euro banknotes for methane Production: Preliminary studies and kinetic approach. Waste Management, 173, 22-28. https://doi.org/10.1016/j.wasman.2023.11.003
  • Meng, S., Li, W., Li, Z., & Song, H. (2023). Recent progress of the transition metal-based catalysts in the catalytic biomass gasification: A mini-review. Fuel, 353, 129169. https://doi.org/10.1016/j.fuel.2023.129169
  • Mohammed, H. I., Garba, K., Ahmed, S. I., & Abubakar, L. G. (2022). Thermodynamics and kinetics of Doum (Hyphaene thebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy. Renewable Energy, 200, 1275-1285. https://doi.org/10.1016/j.renene.2022.10.042
  • Ng, R. T., Tay, D. H., Ghani, W. a. W. a. K., & Ng, D. K. (2013). Modelling and optimisation of biomass fluidised bed gasifier. Applied Thermal Engineering, 61(1), 98-105. https://doi.org/10.1016/j.applthermaleng.2013.03.048
  • Pang, Y., Zhu, X., Li, N., & Wang, Z. (2024). Study on CO2 co-gasification of cellulose and high-density polyethylene via TG-FTIR and ReaxFF MD. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.04.119
  • Parrillo, F., Ardolino, F., Calì, G., Marotto, D., Pettinau, A., & Arena, U. (2021). Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor. Energy, 219, 119604. https://doi.org/10.1016/j.energy.2020.119604
  • Parrillo, F., Ardolino, F., Boccia, C., Calì, G., Marotto, D., Pettinau, A., & Arena, U. (2023). Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor. Energy, 273, 127220. https://doi.org/10.1016/j.energy.2023.127220
  • Portella, E. H., Romanzini, D., Angrizani, C. C., Amico, S. C., & Zattera, A. J. (2016). Influence of Stacking Sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research, 19(3), 542-547. https://doi.org/10.1590/1980-5373-mr-2016-0058
  • Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822. https://doi.org/10.1016/0016-2361(95)80013-8
  • Ren, J., Cao, J., Zhao, X., Yang, F., & Wei, X. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. https://doi.org/10.1016/j.rser.2019.109426
  • RDK. (2022). Summary banknote recycling study November 2022 (Accessed:01/09/2024) https://www.royaldutchkusters.com/blog/summary-banknote-recycling-study-2022
  • Sadaka, S. S. (2013). Gasification of raw and torrefied cotton gin wastes in an auger system. Applied Engineering in Agriculture, 405-414. https://doi.org/10.13031/aea.29.9919
  • Sarker, T. R., Nanda, S., Meda, V., & Dalai, A. K. (2022). Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel, 323, 124239. https://doi.org/10.1016/j.fuel.2022.124239
  • Sheikh, M. M. I., Kim, C. H., Park, H. J., Kim, S. H., Kim, G. C., Lee, J. Y., Sim, S., & Kim, J. W. (2013). Alkaline pretreatment ımproves saccharification and ethanol yield from waste money bills. Bioscience Biotechnology and Biochemistry, 77(7), 1397-1402. https://doi.org/10.1271/bbb.130002
  • Singh, D., & Yadav, S. (2021). Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste. Journal of Environmental Chemical Engineering, 9(1), 104722. https://doi.org/10.1016/j.jece.2020.104722
  • Smith, D. L., Montemayor, M. D., Carosio, F., & Grunlan, J. C. (2024). Universal intumescent polyelectrolyte complex treatment for cotton, polyester, and blends thereof. Polymer Degradation and Stability, 228, 110936. https://doi.org/10.1016/j.polymdegradstab.2024.110936
  • Widjaya, E. R., Chen, G., Bowtell, L., & Hills, C. (2018). Gasification of non-woody biomass: A literature review. Renewable and Sustainable Energy Reviews, 89, 184-193. https://doi.org/10.1016/j.rser.2018.03.023
  • Xie, J., Zhong, W., Shao, Y., & Zhou, G. (2021). Simulation of co-gasification of coal and wood in a dual fluidized bed system. Advanced Powder Technology, 32(1), 52-71. https://doi.org/10.1016/j.apt.2020.11.017
  • Yousef, S., Eimontas, J., Striūgas, N., Trofimov, E., Hamdy, M., & Abdelnaby, M. A. (2020). Conversion of end-of-life cotton banknotes into liquid fuel using mini-pyrolysis plant. Journal of Cleaner Production, 267, 121612. https://doi.org/10.1016/j.jclepro.2020.121612
  • Yousef, S., Kuliešienė, N., Sakalauskaitė, S., Nenartavičius, T., & Daugelavičius, R. (2021). Sustainable green strategy for recovery of glucose from end-of-life euro banknotes. Waste Management, 123, 23-32. https://doi.org/10.1016/j.wasman.2021.01.007
  • Zhang, X., Xu, W., Rauf, A., & Ozturk, I. (2024). Transitioning from conventional energy to clean renewable energy in G7 countries: A signed network approach. Energy, 307, 132655. https://doi.org/10.1016/j.energy.2024.132655
Year 2024, Volume: 11 Issue: 4, 801 - 813, 30.12.2024
https://doi.org/10.54287/gujsa.1552835

Abstract

References

  • Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2024). Experimental analysis of the effects of feedstock composition on the plastic and biomass co-gasification process. Renewable Energy, 231, 120960. https://doi.org/10.1016/j.renene.2024.120960
  • Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. https://doi.org/10.1016/j.rser.2014.07.129
  • Block, C., Ephraim, A., Weiss-Hortala, E., Minh, D. P., Nzihou, A., & Vandecasteele, C. (2018). Co-pyrogasification of plastics and biomass, a Review. Waste and Biomass Valorization, 10(3), 483-509. https://doi.org/10.1007/s12649-018-0219-8
  • BoC. (2011). Life cycle assessment of Canada’s polymer bank notes and cotton-paper bank notes final report. Bank of Canada.
  • BoI. (2023). Environment Report 2023. Bank of Italy.
  • Cabuk, B., Duman, G., Yanik, J., & Olgun, H. (2020). Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. International Journal of Hydrogen Energy, 45(5), 3435-3443. https://doi.org/10.1016/j.ijhydene.2019.02.130
  • Chan, Y. H., Cheah, K. W., How, B. S., Loy, A. C. M., Shahbaz, M., Singh, H. K. G., Yusuf, N. R., Shuhaili, A. F. A., Yusup, S., Ghani, W. A. W. A. K. G., Rambli, J., Kansha, Y., Lam, H. L., Hong, B. H., & Ngan, S. L. (2019). An overview of biomass thermochemical conversion technologies in Malaysia. The Science of the Total Environment, 680, 105-123. https://doi.org/10.1016/j.scitotenv.2019.04.211
  • Corradini, E., Teixeira, E. M., Paladin, P. D., Agnelli, J. A., Silva, O. R. R. F., & Mattoso, L. H. C. (2009). Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 97(2), 415-419. https://doi.org/10.1007/s10973-008-9693-8
  • Das, B., Bhattacharya, A., & Datta, A. (2020). Kinetic modeling of biomass gasification and tar formation in a fluidized bed gasifier using equivalent reactor network (ERN). Fuel, 280, 118582. https://doi.org/10.1016/j.fuel.2020.118582
  • DLR. (2022). Annual Report 2022. De La Rue plc.
  • DLR. (2023). Annual Report 2023. De La Rue plc.
  • ECB. (2023). Product Environmental Footprint study of euro banknotes as a payment instrument. European Central Bank.
  • Elbersen, W., Lammens, T. M., Alakangas, E. A., Annevelink, B., Harmsen, P., & Elbersen, B. (2017). Lignocellulosic Biomass Quality: Matching Characteristics With Biomass Conversion Requirements. In: C. Panoutsou (Eds.), Modeling and Optimization of Biomass Supply Chains, (pp. 55-78). https://doi.org/10.1016/b978-0-12-812303-4.00003-3
  • George, J., Arun, P., & Muraleedharan, C. (2019). Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. Journal of the Energy Institute, 92(6), 1977-1986. https://doi.org/10.1016/j.joei.2018.10.014
  • G+D (2024). Number of Banknotes in circulation worldwide (Accessed:01/09/2024) https://www.gi-de.com/en/currency-technology/banknote-solutions/banknote-production/banknote-printing
  • Hanchate, N., Ramani, S., Mathpati, C., & Dalvi, V. H. (2021). Biomass gasification using dual fluidized bed gasification systems: A review. Journal of Cleaner Production, 280, 123148. https://doi.org/10.1016/j.jclepro.2020.123148
  • Hanegraaf, R., Larçin, A., Jonker, N., Mandley, S., & Miedema, J. (2019). Life cycle assessment of cash payments in the Netherlands. The International Journal of Life Cycle Assessment, 25(1), 120-140. https://doi.org/10.1007/s11367-019-01637-3
  • He, Z., Liu, Y., Kim, H. J., Tewolde, H., & Zhang, H. (2022). Fourier transform infrared spectral features of plant biomass components during cotton organ development and their biological implications. Journal of Cotton Research, 5(1). https://doi.org/10.1186/s42397-022-00117-8
  • Huang, J., Zhang, H., Tan, Q., Li, L., Xu, R., Xu, Z., & Li, X. (2021). Enhanced conversion of CO2 into O2-free fuel gas via the Boudouard reaction with biochar in an atmospheric plasmatron. Journal of CO2 Utilization, 45, 101429. https://doi.org/10.1016/j.jcou.2020.101429
  • Hussain, M., Ali, O., Raza, N., Zabiri, H., Ahmed, A., & Ali, I. (2023). Recent advances in dynamic modeling and control studies of biomass gasification for production of hydrogen rich syngas. RSC Advances, 13(34), 23796-23811. https://doi.org/10.1039/d3ra01219k
  • IEA. (2021). Energy supply (Accessed:01/09/2024) https://www.iea.org/world/energy-mix
  • IEA. (2023). World Energy Outlook 2023. International Energy Agency.
  • Jahromi, R., Rezaei, M., Samadi, S. H., & Jahromi, H. (2021). Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science, 231, 116249. https://doi.org/10.1016/j.ces.2020.116249
  • K&B (2022). Annual increase trend in banknote production (Accessed:01/09/2024) https://www.koenig-bauer.com/en/news/details/article/90-of-the-worlds-banknotes-are-swiss-1
  • Kavuştu, H., & Şimşek, E. H. (2023). Characterization and gasification of end-of-life banknotes rich in cotton content. Waste Management, 171, 473-481. https://doi.org/10.1016/j.wasman.2023.09.034
  • Kavuştu, H. (2024). Gasification of end-of-life banknotes rich in cotton content in a fluidized bed reactor and modelling (in Turkish). PhD Thesis, Ankara University.
  • Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. https://doi.org/10.3390/en20300556
  • Luján-Ornelas, C., del C Sternenfels, U. M., & Güereca, L. P. (2018). Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes. The Science of the Total Environment, 630, 409-421. https://doi.org/10.1016/j.scitotenv.2018.02.177
  • Mancilla-Leytón, J., Fernández-Rodríguez, M., De La Lama-Calvente, D., & Borja, R. (2024). Evaluation of batch mesophilic anaerobic digestion of waste Euro banknotes for methane Production: Preliminary studies and kinetic approach. Waste Management, 173, 22-28. https://doi.org/10.1016/j.wasman.2023.11.003
  • Meng, S., Li, W., Li, Z., & Song, H. (2023). Recent progress of the transition metal-based catalysts in the catalytic biomass gasification: A mini-review. Fuel, 353, 129169. https://doi.org/10.1016/j.fuel.2023.129169
  • Mohammed, H. I., Garba, K., Ahmed, S. I., & Abubakar, L. G. (2022). Thermodynamics and kinetics of Doum (Hyphaene thebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy. Renewable Energy, 200, 1275-1285. https://doi.org/10.1016/j.renene.2022.10.042
  • Ng, R. T., Tay, D. H., Ghani, W. a. W. a. K., & Ng, D. K. (2013). Modelling and optimisation of biomass fluidised bed gasifier. Applied Thermal Engineering, 61(1), 98-105. https://doi.org/10.1016/j.applthermaleng.2013.03.048
  • Pang, Y., Zhu, X., Li, N., & Wang, Z. (2024). Study on CO2 co-gasification of cellulose and high-density polyethylene via TG-FTIR and ReaxFF MD. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.04.119
  • Parrillo, F., Ardolino, F., Calì, G., Marotto, D., Pettinau, A., & Arena, U. (2021). Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor. Energy, 219, 119604. https://doi.org/10.1016/j.energy.2020.119604
  • Parrillo, F., Ardolino, F., Boccia, C., Calì, G., Marotto, D., Pettinau, A., & Arena, U. (2023). Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor. Energy, 273, 127220. https://doi.org/10.1016/j.energy.2023.127220
  • Portella, E. H., Romanzini, D., Angrizani, C. C., Amico, S. C., & Zattera, A. J. (2016). Influence of Stacking Sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research, 19(3), 542-547. https://doi.org/10.1590/1980-5373-mr-2016-0058
  • Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822. https://doi.org/10.1016/0016-2361(95)80013-8
  • Ren, J., Cao, J., Zhao, X., Yang, F., & Wei, X. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. https://doi.org/10.1016/j.rser.2019.109426
  • RDK. (2022). Summary banknote recycling study November 2022 (Accessed:01/09/2024) https://www.royaldutchkusters.com/blog/summary-banknote-recycling-study-2022
  • Sadaka, S. S. (2013). Gasification of raw and torrefied cotton gin wastes in an auger system. Applied Engineering in Agriculture, 405-414. https://doi.org/10.13031/aea.29.9919
  • Sarker, T. R., Nanda, S., Meda, V., & Dalai, A. K. (2022). Process optimization and investigating the effects of torrefaction and pelletization on steam gasification of canola residue. Fuel, 323, 124239. https://doi.org/10.1016/j.fuel.2022.124239
  • Sheikh, M. M. I., Kim, C. H., Park, H. J., Kim, S. H., Kim, G. C., Lee, J. Y., Sim, S., & Kim, J. W. (2013). Alkaline pretreatment ımproves saccharification and ethanol yield from waste money bills. Bioscience Biotechnology and Biochemistry, 77(7), 1397-1402. https://doi.org/10.1271/bbb.130002
  • Singh, D., & Yadav, S. (2021). Steam gasification with torrefaction as pretreatment to enhance syngas production from mixed food waste. Journal of Environmental Chemical Engineering, 9(1), 104722. https://doi.org/10.1016/j.jece.2020.104722
  • Smith, D. L., Montemayor, M. D., Carosio, F., & Grunlan, J. C. (2024). Universal intumescent polyelectrolyte complex treatment for cotton, polyester, and blends thereof. Polymer Degradation and Stability, 228, 110936. https://doi.org/10.1016/j.polymdegradstab.2024.110936
  • Widjaya, E. R., Chen, G., Bowtell, L., & Hills, C. (2018). Gasification of non-woody biomass: A literature review. Renewable and Sustainable Energy Reviews, 89, 184-193. https://doi.org/10.1016/j.rser.2018.03.023
  • Xie, J., Zhong, W., Shao, Y., & Zhou, G. (2021). Simulation of co-gasification of coal and wood in a dual fluidized bed system. Advanced Powder Technology, 32(1), 52-71. https://doi.org/10.1016/j.apt.2020.11.017
  • Yousef, S., Eimontas, J., Striūgas, N., Trofimov, E., Hamdy, M., & Abdelnaby, M. A. (2020). Conversion of end-of-life cotton banknotes into liquid fuel using mini-pyrolysis plant. Journal of Cleaner Production, 267, 121612. https://doi.org/10.1016/j.jclepro.2020.121612
  • Yousef, S., Kuliešienė, N., Sakalauskaitė, S., Nenartavičius, T., & Daugelavičius, R. (2021). Sustainable green strategy for recovery of glucose from end-of-life euro banknotes. Waste Management, 123, 23-32. https://doi.org/10.1016/j.wasman.2021.01.007
  • Zhang, X., Xu, W., Rauf, A., & Ozturk, I. (2024). Transitioning from conventional energy to clean renewable energy in G7 countries: A signed network approach. Energy, 307, 132655. https://doi.org/10.1016/j.energy.2024.132655
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion
Journal Section Chemical Engineering
Authors

Hakan Kavuştu 0000-0002-3492-2754

Emir H. Şimşek 0000-0001-7945-8222

Publication Date December 30, 2024
Submission Date September 19, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Kavuştu, H., & Şimşek, E. H. (2024). Experimental Study on Gasification of Banknote Waste: Effects of Torrefaction Pre-Treatment and Co-Gasification on Producer Gas Composition. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 801-813. https://doi.org/10.54287/gujsa.1552835