Research Article
BibTex RIS Cite

Shielding Behaviour of TiO2 Reinforced Composite Materials Against 4 MeV Energy Photons and Neutrons

Year 2024, Volume: 11 Issue: 4, 722 - 731, 30.12.2024
https://doi.org/10.54287/gujsa.1565477

Abstract

In order to eliminate or minimize the possible negative effects that may arise due to the use of increased artificial radiation, the radiation permeability properties of Al 6082 alloy material, Al 6082+5% TiO2, Al+15% TiO2, and Al 6082+25% TiO2 metal matrix composite materials against 4 MeV fast neutron and gamma radiation were analyzed in the NGCal program. Mass attenuation coefficient (MAC), mean free path (MFP), linear attenuation coefficient (LAC), tenth value layer (TVL), and half value layer (HVL) and parameters were analyzed for both fast neutron and gamma radiation. As a result of the analysis of 4 MeV energy fast neutron and gamma radiation, the linear attenuation values of the material against both fast neutron and photon increased depending on the increasing reinforcement ratio, while the half value layer, tenth value layer and mean free path values decreased. While the LAC values of Al 6082, Al 6082+5% TiO2, Al+15% TiO2, Al 6082+25% TiO2 materials against fast neutrons vary between approximately 0.00074 cm-1 and 0.0173 cm-1, their LAC values against photons vary between 0.084 cm-1 and 0.96 cm-1.

Supporting Institution

GAZİ BAP

Project Number

FKA-2023-8617

Thanks

The researchers would like to acknowledge the financial support of the Gazi University Scientific Research Projects Office, TÜRKİYE (Project Number: FKA-2023-8617), TÜBİTAK 2211-C Programme and YÖK 100/2000 Programme.

References

  • Akman, F. Ozkan, I. Kaçal, M. R. Polat, H. Issa, S. A. M. Tekin, H. O. & Agar, O. (2021). Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites. Applied Radiation and Isotopes, 167, 109470. https://doi.org/10.1016/j.apradiso.2020.109470
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., & Al-Odayni, A.-B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17(1), 100793. https://doi.org/10.1016/j.jrras.2023.100793
  • Alım, B., Ozpolat, O. F., Sakar, E., Han, I., Arslan, I., Singh, V. P., & Demir, L. (2022). Precipitation hardening stainless steels: potential use radiation shielding materials. Radiation Physics and Chemistry, 194, 110009. https://doi.org/10.1016/j.radphyschem.2022.110009
  • Almuqrin, A., Tijani, S. A., Al-Ghamdi, A., Alhuzaymi, T., & Alotiby, F. (2023). Radiation shielding properties of high-density polyethylene (C2H4)/ molybdenum III oxide (MoO3) polymer composites for dental diagnostic applications. Journal of Radiation Research and Applied Sciences, 16(4), 100681. https://doi.org/10.1016/j.jrras.2023.100681
  • Chang, Q., Guo, S., & Zhang, X. (2023). Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Materials & Design, 233, 112253. https://doi.org/10.1016/j.matdes.2023.112253
  • Eke, C. (2024). The role of WO3 on the optical and radiation attenuation characteristics of ZnO–Na2O–B2O3 glasses. Radiation Physics and Chemistry, 224, 112036. https://doi.org/10.1016/j.radphyschem.2024.112036
  • Gökçe, H. S., Güngör, O., & Yılmaz, H. (2021). An online software to simulate the shielding properties of materials for neutrons and photons: NGCal. Radiation Physics and Chemistry, 185, 109519. https://doi.org/10.1016/j.radphyschem.2021.109519
  • Huo, H., Lu, Y., Zhang, H., & Zhong, G. (2024). Sm2O3 micron plates/B4C/HDPE composites containing high specific surface area fillers for neutron and gamma-ray complex radiation shielding. Composites Science and Technology, 251, 110567. https://doi.org/10.1016/j.compscitech.2024.110567
  • Huwayz, M. A., Basha, B., Alalawi, A., Alrowaili, Z. A. Sriwunkum, C., Alsaiari, N. S., & Al-Buriahi, M. S. (2024). Influence of BaO addition on gamma attenuation and radiation shielding performance of SiO2-B2O3-SrO-ZrO2 glasses. Journal of Radiation Research and Applied Sciences, 17(4), 101119. https://doi.org/10.1016/j.jrras.2024.101119
  • Kavun, Y., Kerli, S., Eskalen, H., & Kavgacı, M. (2022). Characterization and nuclear shielding performance of Sm doped In₂O₃ thin films. Radiation Physics and Chemistry, 194, 110014. https://doi.org/10.1016/j.radphyschem.2022.110014
  • Kılıçoglu, O., & Tekin, H. O. (2020). Bioactive glasses with TiO2 additive: behavior characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8), 10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
  • Jandaghian, B., Dastjerdi, M. H. C., & Mokhtari, J. (2024). Characterization of neutronic parameters and radiation shielding design for an aqueous homogeneous reactor. Nuclear Engineering and Design, 417, 112832. https://doi.org/10.1016/j.nucengdes.2023.112832
  • Juhim, F., Chee, F. P., Awang, A., Moh, P. Y., Salleh, K. A. M., Ibrahim, S., Dayou, J., Alalawi, A., & Al-Buriahi, M. S. (2023). Study of gamma radiation shielding on tellurite glass containing TiO2 and Al2O3 nanoparticles. Heliyon, 9(11), e22529. https://doi.org/10.1016/j.heliyon.2023.e22529
  • Mahmoud, K. A., Binmujlli, M., Marashdeh, M., Sayyed, M. I., Aljaafreh, M. J., Akhdar, H., Alhindawy, I. G. (2024). Comprehensive analysis of the effects of Mo and Co on the synthesis, structural, and radiation-shielding properties of TiO2 based composites. Progress in Nuclear Energy, 169, 105105. https://doi.org/10.1016/j.pnucene.2024.105105
  • Nafee, S., Tijani, S. A., Al-Hadeethi, Y., & Hussein, M. A. (2024). Radiation shielding potential of cellulose acetate-CdO-ZnO polymer composites in comparison with concrete and gypsum. Radiation Physics and Chemistry, 225, 112145. https://doi.org/10.1016/j.radphyschem.2024.112145
  • Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238
  • Reda, S. M., & Saleh, H. M. (2021). Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. Progress in Nuclear Energy, 142, 104012. https://doi.org/10.1016/j.pnucene.2021.104012
Year 2024, Volume: 11 Issue: 4, 722 - 731, 30.12.2024
https://doi.org/10.54287/gujsa.1565477

Abstract

Project Number

FKA-2023-8617

References

  • Akman, F. Ozkan, I. Kaçal, M. R. Polat, H. Issa, S. A. M. Tekin, H. O. & Agar, O. (2021). Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites. Applied Radiation and Isotopes, 167, 109470. https://doi.org/10.1016/j.apradiso.2020.109470
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., & Al-Odayni, A.-B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17(1), 100793. https://doi.org/10.1016/j.jrras.2023.100793
  • Alım, B., Ozpolat, O. F., Sakar, E., Han, I., Arslan, I., Singh, V. P., & Demir, L. (2022). Precipitation hardening stainless steels: potential use radiation shielding materials. Radiation Physics and Chemistry, 194, 110009. https://doi.org/10.1016/j.radphyschem.2022.110009
  • Almuqrin, A., Tijani, S. A., Al-Ghamdi, A., Alhuzaymi, T., & Alotiby, F. (2023). Radiation shielding properties of high-density polyethylene (C2H4)/ molybdenum III oxide (MoO3) polymer composites for dental diagnostic applications. Journal of Radiation Research and Applied Sciences, 16(4), 100681. https://doi.org/10.1016/j.jrras.2023.100681
  • Chang, Q., Guo, S., & Zhang, X. (2023). Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Materials & Design, 233, 112253. https://doi.org/10.1016/j.matdes.2023.112253
  • Eke, C. (2024). The role of WO3 on the optical and radiation attenuation characteristics of ZnO–Na2O–B2O3 glasses. Radiation Physics and Chemistry, 224, 112036. https://doi.org/10.1016/j.radphyschem.2024.112036
  • Gökçe, H. S., Güngör, O., & Yılmaz, H. (2021). An online software to simulate the shielding properties of materials for neutrons and photons: NGCal. Radiation Physics and Chemistry, 185, 109519. https://doi.org/10.1016/j.radphyschem.2021.109519
  • Huo, H., Lu, Y., Zhang, H., & Zhong, G. (2024). Sm2O3 micron plates/B4C/HDPE composites containing high specific surface area fillers for neutron and gamma-ray complex radiation shielding. Composites Science and Technology, 251, 110567. https://doi.org/10.1016/j.compscitech.2024.110567
  • Huwayz, M. A., Basha, B., Alalawi, A., Alrowaili, Z. A. Sriwunkum, C., Alsaiari, N. S., & Al-Buriahi, M. S. (2024). Influence of BaO addition on gamma attenuation and radiation shielding performance of SiO2-B2O3-SrO-ZrO2 glasses. Journal of Radiation Research and Applied Sciences, 17(4), 101119. https://doi.org/10.1016/j.jrras.2024.101119
  • Kavun, Y., Kerli, S., Eskalen, H., & Kavgacı, M. (2022). Characterization and nuclear shielding performance of Sm doped In₂O₃ thin films. Radiation Physics and Chemistry, 194, 110014. https://doi.org/10.1016/j.radphyschem.2022.110014
  • Kılıçoglu, O., & Tekin, H. O. (2020). Bioactive glasses with TiO2 additive: behavior characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8), 10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
  • Jandaghian, B., Dastjerdi, M. H. C., & Mokhtari, J. (2024). Characterization of neutronic parameters and radiation shielding design for an aqueous homogeneous reactor. Nuclear Engineering and Design, 417, 112832. https://doi.org/10.1016/j.nucengdes.2023.112832
  • Juhim, F., Chee, F. P., Awang, A., Moh, P. Y., Salleh, K. A. M., Ibrahim, S., Dayou, J., Alalawi, A., & Al-Buriahi, M. S. (2023). Study of gamma radiation shielding on tellurite glass containing TiO2 and Al2O3 nanoparticles. Heliyon, 9(11), e22529. https://doi.org/10.1016/j.heliyon.2023.e22529
  • Mahmoud, K. A., Binmujlli, M., Marashdeh, M., Sayyed, M. I., Aljaafreh, M. J., Akhdar, H., Alhindawy, I. G. (2024). Comprehensive analysis of the effects of Mo and Co on the synthesis, structural, and radiation-shielding properties of TiO2 based composites. Progress in Nuclear Energy, 169, 105105. https://doi.org/10.1016/j.pnucene.2024.105105
  • Nafee, S., Tijani, S. A., Al-Hadeethi, Y., & Hussein, M. A. (2024). Radiation shielding potential of cellulose acetate-CdO-ZnO polymer composites in comparison with concrete and gypsum. Radiation Physics and Chemistry, 225, 112145. https://doi.org/10.1016/j.radphyschem.2024.112145
  • Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238
  • Reda, S. M., & Saleh, H. M. (2021). Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. Progress in Nuclear Energy, 142, 104012. https://doi.org/10.1016/j.pnucene.2021.104012
There are 17 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Materials Engineering
Authors

Zübeyde Özkan 0000-0003-2901-7749

Uğur Gökmen 0000-0002-6903-0297

Project Number FKA-2023-8617
Publication Date December 30, 2024
Submission Date October 11, 2024
Acceptance Date November 23, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Özkan, Z., & Gökmen, U. (2024). Shielding Behaviour of TiO2 Reinforced Composite Materials Against 4 MeV Energy Photons and Neutrons. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 722-731. https://doi.org/10.54287/gujsa.1565477