Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 15 - 35, 26.03.2025
https://doi.org/10.54287/gujsa.1592915

Abstract

References

  • Alqudah, A. M. (2020). AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & Biological Engineering & Computing, 58, 41-53. https://doi.org/10.1007/s11517-019-02066-y
  • Asif, S., Amjad, K., & Qurrat‑ul‑Ain (2022). Deep residual network for diagnosis of retinal diseases using optical coherence tomography images. Interdisciplinary Sciences: Computational Life Sciences, 14(4), 906-916. https://doi.org/10.1007/s12539-022-00533-z
  • Berrimi, M., & Moussaoui, A. (2020). Deep learning for identifying and classifying retinal diseases. In 2020 2nd International Conference on computer and information sciences (ICCIS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCIS49240.2020.9257674
  • Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599. https://doi.org/10.48550/arXiv.1012.2599
  • Cheyi, J., & Çetin-Kaya, Y. (2024). Advanced CNN-Based Classification and Segmentation for Enhanced Breast Cancer Ultrasound Imaging. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 647-667. https://doi.org/10.54287/gujsa.1529857
  • Çetin-Kaya, Y. (2024). Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image. Diagnostics, 14(19), 2253. https://doi.org/10.3390/diagnostics14192253
  • Çetin-Kaya, Y., & Kaya, M. (2024). A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging. Diagnostics, 14(4), 383. https://doi.org/10.3390/diagnostics14040383
  • Çevik, İ., Çakmak, H., Çelik, Ö., & Okyay, P. (2021). Yaşam Boyu Göz Sağlığı: “2020 Vizyonu: Görme Hakkı”. ESTÜDAM Halk Sağlığı Dergisi, 6(3), 310-321. https://doi.org/10.35232/estudamhsd.891156
  • Duran, O., Turan, B., & Kaya, M. (2025). Machine-learning-based ensemble regression for vehicle-to-vehicle distance estimation using a toe-in style stereo camera. Measurement, 240, 115540. https://doi.org/10.1016/j.measurement.2024.115540
  • Farsiu, S., Chiu, S. J., O'Connell, R. V., Folgar, F. A., Yuan, E., Izatt, J. A., ... & Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group. (2014). Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1), 162-172. https://doi.org/10.1016/j.ophtha.2013.07.013
  • Fernandes, V., Junior, G. B., de Paiva, A. C., Silva, A. C., & Gattass, M. (2021). Bayesian convolutional neural network estimation for pediatric pneumonia detection and diagnosis. Computer Methods and Programs in Biomedicine, 208, 106259. https://doi.org/10.1016/j.cmpb.2021.106259
  • Frazier, Peter I., A Tutorial on Bayesian Optimization, arXiv:1807.02811v1, 2018, doi: https://doi.org/10.48550/arXiv.1807.02811
  • Fujimoto, J. G., Pitris, C., Boppart, S. A., & Brezinski, M. E. (2000). Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2(1-2), 9-25. https://doi.org/10.1038/sj.neo.7900071
  • Güneş, A., & Çetin-Kaya, Y. (2020). Evrişimsel Sinir Ağları ile Görüntülerde Gürültü Türünü Saptama. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 17(1), 75-89. https://doi.org/10.54525/bbmd.1454595
  • İncir, R., & Bozkurt, F. (2024a). A Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Method. In: 32nd Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. https://doi.org/10.1109/SIU61531.2024.10600987
  • İncir, R., & Bozkurt, F. (2024b). A study on effective data preprocessing and augmentation method in diabetic retinopathy classification using pre-trained deep learning approaches. Multimedia Tools and Applications, 83(4), 12185-12208. https://doi.org/10.1007/s11042-023-15754-7
  • Kaggle (2018). Retinal OCT Images. (Accessed:17/03/2024). https://www.kaggle.com/datasets/paultimothymooney/kermany2018
  • Kaya, M. (2024). Feature fusion-based ensemble CNN learning optimization for automated detection of pediatric pneumonia. Biomedical Signal Processing and Control, 87, 105472. https://doi.org/10.1016/j.bspc.2023.105472
  • Kaya, M., & Çetin-Kaya, Y. (2024a). A Novel Deep Learning Architecture Optimization for Multiclass Classification of Alzheimer’s Disease Level. IEEE Access, 12, 46562-46581. https://doi.org/10.1109/ACCESS.2024.3382947
  • Kaya, M., & Çetin-Kaya, Y. (2024b). A novel ensemble learning framework based on a genetic algorithm for the classification of pneumonia. Engineering Applications of Artificial Intelligence, 133, 108494. https://doi.org/10.1016/j.engappai.2024.108494
  • Kaya, M., Ulutürk, S., Çetin-Kaya, Y., Altıntaş, O., & Turan, B. (2023). Optimization of Several Deep CNN Models for Waste Classification. Sakarya University Journal of Computer and Information Sciences, 6(2), 91-104. https://doi.org/10.35377/saucis...1257100
  • Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131. https://doi.org/10.1016/j.cell.2018.02.010
  • Kim, J., & Tran, L. (2021). Retinal disease classification from oct images using deep learning algorithms. In 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp. 1-6). IEEE. https://doi.org/10.1109/CIBCB49929.2021.9562919
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS) (pp. 1097-1105). https://doi.org/10.1145/3065386
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Li, X., Shen, L., Shen, M., & Qiu, C. S. (2019). Integrating handcrafted and deep features for optical coherence tomography based retinal disease classification. IEEE Access, 7, 33771-33777. https://doi.org/10.1109/ACCESS.2019.2891975
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I., (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88, https://doi.org/10.1016/j.media.2017.07.005
  • Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y., (2017). Identification of rice diseases using deep convolutional neural networks. Neurocomputing, 267, 378-384. https://doi.org/10.1016/j.neucom.2017.06.023
  • Malkoç, İ. (2006). Göz Küresinin Tabakaları: Anatomik ve Histolojik Bir Derleme. Eurasian J Med, 38, 124-129.
  • Mascarenhas, S., & Agarwal, M. (2021). A comparison between VGG16, VGG19, and ResNet50 architecture frameworks for image classification. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON). https://doi.org/10.1109/CENTCON52345.2021.9687944
  • O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. https://doi.org/10.48550/arXiv.1511.08458
  • Saleh, N., Abdel Wahed, M., & Salaheldin, A. M. (2022). Transfer learning‐based platform for detecting multi‐classification retinal disorders using optical coherence tomography images. International Journal of Imaging Systems and Technology, 32(3), 740-752. https://doi.org/10.1002/ima.22673
  • Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1-16. https://doi.org/10.1016/j.jmp.2018.03.001
  • Silverman, A. L., Tatham, A. J., Medeiros, F. A., & Weinreb, R. N. (2014). Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography. Journal of neuro-ophthalmology: the official journal of the North American Neuro-Ophthalmology Society, 34(2), https://doi.org/198. 10.1097/WNO.0000000000000115
  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. arXiv:1206.2944v2. https://doi.org/10.48550/arXiv.1206.2944
  • Tayal, A., Gupta, J., Solanki, A., Bisht, K., Nayyar, A., & Masud, M. (2021). DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases. Multimedia Systems, 28(4), 1-22. https://doi.org/10.1007/s00530-021-00769-7
  • Tuncer, S. A., Çınar, A., & Fırat, M. (2021). Hybrid CNN Based Computer-Aided Diagnosis System for Choroidal Neovascularization, Diabetic Macular Edema, Drusen Disease Detection from OCT Images. Traitement du Signal, 38(3). https://doi.org/10.18280/ts.380314
  • Wu, Z., Ayton, L. N., Guymer, R. H., & Luu, C. D. (2013). Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. Investigative ophthalmology & visual science, 54(4), 2800-2806. https://doi.org/10.1167/iovs.13-11613
  • Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. https://doi.org/10.1145/3446776
  • Zheng, C., Xie, X., Zhou, K., Chen, B., Chen, J., Ye, H., ... & Liu, J. (2020). Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders. Translational Vision Science & Technology, 9(2), 29-29. https://doi.org/10.1167/tvst.9.2.29
  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference on Computer Vision, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (pp. 818-833). Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_52

Efficient Diagnosis of Retinal Diseases Using Convolutional Neural Networks

Year 2025, Volume: 12 Issue: 1, 15 - 35, 26.03.2025
https://doi.org/10.54287/gujsa.1592915

Abstract

The eye is a vital sensory organ that enables us to fulfill all our life’s needs. Diseases affecting such a vital organ can have a detrimental impact on our lives. Although certain eye conditions are easily managed, others may result in lasting damage or loss of sight if not identified promptly. Problems within the retina or improper image focus on the retina may result in loss of eyesight. Optical Coherence Tomography (OCT) can identify diseases using retinal images taken from a side-angle view. Medical images are analyzed using Convolutional Neural Networks (CNNs) to automatically diagnose diseases. Doctors may reach varying conclusions when diagnosing diseases based on medical images. These conclusions may even contain human error. These challenges can be overcome with the use of CNNs. When creating a CNN architecture, many hyperparameter values need to be determined at the beginning before the training phase. A well-structured design is crucial for the successful performance of CNNs. The lengthy training time of CNNs makes testing every hyperparameter combination a very time-intensive process. This research determined the best hyperparameters for CNNs by means of Bayesian optimization. The study employed a dataset comprising four categories: DME, CNV, DRUSEN, and NORMAL. With Bayesian optimization, this proposed model reached an accuracy and F1 score of 99.69%, outperforming existing research findings. The proposed model will also help doctors to make decisions and speed up the decision-making process.

References

  • Alqudah, A. M. (2020). AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & Biological Engineering & Computing, 58, 41-53. https://doi.org/10.1007/s11517-019-02066-y
  • Asif, S., Amjad, K., & Qurrat‑ul‑Ain (2022). Deep residual network for diagnosis of retinal diseases using optical coherence tomography images. Interdisciplinary Sciences: Computational Life Sciences, 14(4), 906-916. https://doi.org/10.1007/s12539-022-00533-z
  • Berrimi, M., & Moussaoui, A. (2020). Deep learning for identifying and classifying retinal diseases. In 2020 2nd International Conference on computer and information sciences (ICCIS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCIS49240.2020.9257674
  • Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599. https://doi.org/10.48550/arXiv.1012.2599
  • Cheyi, J., & Çetin-Kaya, Y. (2024). Advanced CNN-Based Classification and Segmentation for Enhanced Breast Cancer Ultrasound Imaging. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 647-667. https://doi.org/10.54287/gujsa.1529857
  • Çetin-Kaya, Y. (2024). Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image. Diagnostics, 14(19), 2253. https://doi.org/10.3390/diagnostics14192253
  • Çetin-Kaya, Y., & Kaya, M. (2024). A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging. Diagnostics, 14(4), 383. https://doi.org/10.3390/diagnostics14040383
  • Çevik, İ., Çakmak, H., Çelik, Ö., & Okyay, P. (2021). Yaşam Boyu Göz Sağlığı: “2020 Vizyonu: Görme Hakkı”. ESTÜDAM Halk Sağlığı Dergisi, 6(3), 310-321. https://doi.org/10.35232/estudamhsd.891156
  • Duran, O., Turan, B., & Kaya, M. (2025). Machine-learning-based ensemble regression for vehicle-to-vehicle distance estimation using a toe-in style stereo camera. Measurement, 240, 115540. https://doi.org/10.1016/j.measurement.2024.115540
  • Farsiu, S., Chiu, S. J., O'Connell, R. V., Folgar, F. A., Yuan, E., Izatt, J. A., ... & Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group. (2014). Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1), 162-172. https://doi.org/10.1016/j.ophtha.2013.07.013
  • Fernandes, V., Junior, G. B., de Paiva, A. C., Silva, A. C., & Gattass, M. (2021). Bayesian convolutional neural network estimation for pediatric pneumonia detection and diagnosis. Computer Methods and Programs in Biomedicine, 208, 106259. https://doi.org/10.1016/j.cmpb.2021.106259
  • Frazier, Peter I., A Tutorial on Bayesian Optimization, arXiv:1807.02811v1, 2018, doi: https://doi.org/10.48550/arXiv.1807.02811
  • Fujimoto, J. G., Pitris, C., Boppart, S. A., & Brezinski, M. E. (2000). Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2(1-2), 9-25. https://doi.org/10.1038/sj.neo.7900071
  • Güneş, A., & Çetin-Kaya, Y. (2020). Evrişimsel Sinir Ağları ile Görüntülerde Gürültü Türünü Saptama. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 17(1), 75-89. https://doi.org/10.54525/bbmd.1454595
  • İncir, R., & Bozkurt, F. (2024a). A Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Method. In: 32nd Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. https://doi.org/10.1109/SIU61531.2024.10600987
  • İncir, R., & Bozkurt, F. (2024b). A study on effective data preprocessing and augmentation method in diabetic retinopathy classification using pre-trained deep learning approaches. Multimedia Tools and Applications, 83(4), 12185-12208. https://doi.org/10.1007/s11042-023-15754-7
  • Kaggle (2018). Retinal OCT Images. (Accessed:17/03/2024). https://www.kaggle.com/datasets/paultimothymooney/kermany2018
  • Kaya, M. (2024). Feature fusion-based ensemble CNN learning optimization for automated detection of pediatric pneumonia. Biomedical Signal Processing and Control, 87, 105472. https://doi.org/10.1016/j.bspc.2023.105472
  • Kaya, M., & Çetin-Kaya, Y. (2024a). A Novel Deep Learning Architecture Optimization for Multiclass Classification of Alzheimer’s Disease Level. IEEE Access, 12, 46562-46581. https://doi.org/10.1109/ACCESS.2024.3382947
  • Kaya, M., & Çetin-Kaya, Y. (2024b). A novel ensemble learning framework based on a genetic algorithm for the classification of pneumonia. Engineering Applications of Artificial Intelligence, 133, 108494. https://doi.org/10.1016/j.engappai.2024.108494
  • Kaya, M., Ulutürk, S., Çetin-Kaya, Y., Altıntaş, O., & Turan, B. (2023). Optimization of Several Deep CNN Models for Waste Classification. Sakarya University Journal of Computer and Information Sciences, 6(2), 91-104. https://doi.org/10.35377/saucis...1257100
  • Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122-1131. https://doi.org/10.1016/j.cell.2018.02.010
  • Kim, J., & Tran, L. (2021). Retinal disease classification from oct images using deep learning algorithms. In 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp. 1-6). IEEE. https://doi.org/10.1109/CIBCB49929.2021.9562919
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS) (pp. 1097-1105). https://doi.org/10.1145/3065386
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Li, X., Shen, L., Shen, M., & Qiu, C. S. (2019). Integrating handcrafted and deep features for optical coherence tomography based retinal disease classification. IEEE Access, 7, 33771-33777. https://doi.org/10.1109/ACCESS.2019.2891975
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I., (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88, https://doi.org/10.1016/j.media.2017.07.005
  • Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y., (2017). Identification of rice diseases using deep convolutional neural networks. Neurocomputing, 267, 378-384. https://doi.org/10.1016/j.neucom.2017.06.023
  • Malkoç, İ. (2006). Göz Küresinin Tabakaları: Anatomik ve Histolojik Bir Derleme. Eurasian J Med, 38, 124-129.
  • Mascarenhas, S., & Agarwal, M. (2021). A comparison between VGG16, VGG19, and ResNet50 architecture frameworks for image classification. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON). https://doi.org/10.1109/CENTCON52345.2021.9687944
  • O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. https://doi.org/10.48550/arXiv.1511.08458
  • Saleh, N., Abdel Wahed, M., & Salaheldin, A. M. (2022). Transfer learning‐based platform for detecting multi‐classification retinal disorders using optical coherence tomography images. International Journal of Imaging Systems and Technology, 32(3), 740-752. https://doi.org/10.1002/ima.22673
  • Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1-16. https://doi.org/10.1016/j.jmp.2018.03.001
  • Silverman, A. L., Tatham, A. J., Medeiros, F. A., & Weinreb, R. N. (2014). Assessment of optic nerve head drusen using enhanced depth imaging and swept source optical coherence tomography. Journal of neuro-ophthalmology: the official journal of the North American Neuro-Ophthalmology Society, 34(2), https://doi.org/198. 10.1097/WNO.0000000000000115
  • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. arXiv:1206.2944v2. https://doi.org/10.48550/arXiv.1206.2944
  • Tayal, A., Gupta, J., Solanki, A., Bisht, K., Nayyar, A., & Masud, M. (2021). DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases. Multimedia Systems, 28(4), 1-22. https://doi.org/10.1007/s00530-021-00769-7
  • Tuncer, S. A., Çınar, A., & Fırat, M. (2021). Hybrid CNN Based Computer-Aided Diagnosis System for Choroidal Neovascularization, Diabetic Macular Edema, Drusen Disease Detection from OCT Images. Traitement du Signal, 38(3). https://doi.org/10.18280/ts.380314
  • Wu, Z., Ayton, L. N., Guymer, R. H., & Luu, C. D. (2013). Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. Investigative ophthalmology & visual science, 54(4), 2800-2806. https://doi.org/10.1167/iovs.13-11613
  • Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. https://doi.org/10.1145/3446776
  • Zheng, C., Xie, X., Zhou, K., Chen, B., Chen, J., Ye, H., ... & Liu, J. (2020). Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders. Translational Vision Science & Technology, 9(2), 29-29. https://doi.org/10.1167/tvst.9.2.29
  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference on Computer Vision, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (pp. 818-833). Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_52
There are 42 citations in total.

Details

Primary Language English
Subjects Pattern Recognition
Journal Section Information and Computing Sciences
Authors

Mahir Kaya 0000-0001-9182-271X

Publication Date March 26, 2025
Submission Date November 28, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Kaya, M. (2025). Efficient Diagnosis of Retinal Diseases Using Convolutional Neural Networks. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 15-35. https://doi.org/10.54287/gujsa.1592915