Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 815 - 835, 30.09.2025
https://doi.org/10.54287/gujsa.1721478

Abstract

References

  • Ahmed Khan, H., Naqvi, S. S., Alharbi, A. A. K., Alotaibi, S., & Alkhathami, M. (2024). Enhancing trash classification in smart cities using federated deep learning. Scientific Reports, 14(1), 11816. https://doi.org/10.1038/s41598-024-62003-4
  • Ajayakumar, J., Curtis, A. J., Rouzier, V., Pape, J. W., Bempah, S., Alam, M. T., Alam, Md. M., Rashid, M. H., Ali, A., & Morris, J. G. (2021). Exploring convolutional neural networks and spatial video for on-the-ground mapping in informal settlements. International Journal of Health Geographics, 20(1), 5. https://doi.org/10.1186/s12942-021-00259-z
  • Ali, M. A. S., P. P., F. R., & Salama Abd Elminaam, D. (2023). Correction: Ali et al. A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem. Mathematics 2022, 10, 2675. Mathematics, 11(9), 2195. https://doi.org/10.3390/math11092195
  • Alrayes, F. S., Asiri, M. M., Maashi, M. S., Nour, M. K., Rizwanullah, M., Osman, A. E., Drar, S., & Zamani, A. S. (2023). Waste classification using vision transformer based on multilayer hybrid convolution neural network. Urban Climate, 49, 101483. https://doi.org/10.1016/j.uclim.2023.101483
  • Çetin-Kaya, Y. (2024). Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image. Diagnostics, 14(19). https://doi.org/10.3390/diagnostics14192253
  • Cheyi, J., & Çetin Kaya, Y. (2024). Advanced CNN-Based Classification and Segmentation for Enhanced Breast Cancer Ultrasound Imaging. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 647–667. https://doi.org/10.54287/gujsa.1529857
  • Feng, Z., Yang, J., Chen, L., Chen, Z., & Li, L. (2022). An Intelligent Waste-Sorting and Recycling Device Based on Improved EfficientNet. International Journal of Environmental Research and Public Health, 19(23), 15987. https://doi.org/10.3390/ijerph192315987
  • Güneş, A., & Çetin Kaya, Y. (2024). Evrişimsel Sinir Ağları ile Görüntülerde Gürültü Türünü Saptama. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 17(1), 75–89. https://doi.org/10.54525/bbmd.1454595
  • Guo, D., Yang, Q., Zhang, Y.-D., Jiang, T., & Yan, H. (2021). Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network. Computer Modeling in Engineering & Sciences, 127(2), 599–620. https://doi.org/10.32604/cmes.2021.014119
  • Gyawali, D., Regmi, A., Shakya, A., Gautam, A., & Shrestha, S. (2020). Comparative Analysis of Multiple Deep CNN Models for Waste Classification. https://doi.org/10.48550/arXiv.2004.02168
  • Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Radeva, P. (2021). Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Reports, 7, 5248–5256. https://doi.org/10.1016/j.egyr.2021.08.028
  • Jayawickrama, N., Ojala, R., Pirhonen, J., Kivekäs, K., & Tammi, K. (2022). Classification of Trash and Valuables with Machine Vision in Shared Cars. Applied Sciences, 12(11), 5695. https://doi.org/10.3390/app12115695
  • Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., & Zavala, V. M. (2021). Using ATR-FTIR spectra and convolutional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. https://doi.org/10.1016/j.compchemeng.2021.107547
  • Kaya, M. (2025). Efficient Diagnosis of Retinal Diseases Using Convolutional Neural Networks. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 15–35. https://doi.org/10.54287/gujsa.1592915
  • Kaya, M., & Çetin-Kaya, Y. (2021). Seamless computation offloading for mobile applications using an online learning algorithm. Computing, 103(5), 771–799. https://doi.org/10.1007/s00607-020-00873-y
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. http://code.google.com/p/cuda-convnet/
  • Lapo, J. R., & Cumbicus-Pineda, O. M. (2024). Detection of recyclable solid waste using convolutional neural networks and PyTorch. IEEE Latin America Transactions, 22(6), 475–483. https://doi.org/10.1109/TLA.2024.10534304
  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Lin, K., Zhao, Y., Gao, X., Zhang, M., Zhao, C., Peng, L., Zhang, Q., & Zhou, T. (2022). Applying a deep residual network coupling with transfer learning for recyclable waste sorting. Environmental Science and Pollution Research, 29(60), 91081–91095. https://doi.org/10.1007/s11356-022-22167-w
  • Lu, G., Wang, Y., Yang, H., & Zou, J. (2020). One-dimensional convolutional neural networks for acoustic waste sorting. Journal of Cleaner Production, 271, 122393. https://doi.org/10.1016/j.jclepro.2020.122393
  • Melinte, D. O., Travediu, A.-M., & Dumitriu, D. N. (2020). Deep Convolutional Neural Networks Object Detector for Real-Time Waste Identification. Applied Sciences, 10(20), 7301. https://doi.org/10.3390/app10207301
  • Mookkaiah, S. S., Thangavelu, G., Hebbar, R., Haldar, N., & Singh, H. (2022). Design and development of smart Internet of Things–based solid waste management system using computer vision. Environmental Science and Pollution Research, 29(43), 64871–64885. https://doi.org/10.1007/s11356-022-20428-2
  • Ping, P., Xu, G., Kumala, E., & Gao, J. (2020). Smart Street Litter Detection and Classification Based on Faster R-CNN and Edge Computing. International Journal of Software Engineering and Knowledge Engineering, 30(04), 537–553. https://doi.org/10.1142/S0218194020400045
  • Qin, L. W., Ahmad, M., Ali, I., Mumtaz, R., Zaidi, S. M. H., Alshamrani, S. S., Raza, M. A., & Tahir, M. (2021). Precision Measurement for Industry 4.0 Standards towards Solid Waste Classification through Enhanced Imaging Sensors and Deep Learning Model. Wireless Communications and Mobile Computing, 2021(1). https://doi.org/10.1155/2021/9963999
  • Özatılgan, A. & Kaya, M. (2024). A Lightweight Convolutional Neural Network for Classification of Brain Tumors Using Magnetic Resonance Imaging. Sakarya University Journal of Computer and Information Sciences, 7(3). 482-493. https://doi.org/10.35377/saucis...1518139
  • Shi, C., Tan, C., Wang, T., & Wang, L. (2021). A Waste Classification Method Based on a Multilayer Hybrid Convolution Neural Network. Applied Sciences, 11(18), 8572. https://doi.org/10.3390/app11188572
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (2022). 2022 Yılı Atık İstatistikleri. https://webdosya.csb.gov.tr/db/ced/icerikler/2022-yili-atik--stat-st-k-bulten-_-20241225091056.doc
  • Tran, B.-G., & Nguyen, D.-L. (2022). Simple and Efficient Convolutional Neural Network for Trash Classification. Annals of Computer Science and Information Systems, 33, 255–260. https://doi.org/10.15439/2022R01
  • Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20–29. https://doi.org/10.1016/j.wasman.2021.08.028
  • Wang, J. (2024). Application research of image classification algorithm based on deep learning in household garbage sorting. Heliyon, 10(9), e29966. https://doi.org/10.1016/j.heliyon.2024.e29966
  • Wang, N., Wu, Q., Wang, M., He, D., & Fang, H. (2024). A novel recycling method using machine vision to assist in the processing of stacked waste fans. Journal of Material Cycles and Waste Management, 26(3), 1649–1666. https://doi.org/10.1007/s10163-024-01916-8
  • World Bank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. https://openknowledge.worldbank.org/handle/10986/30317
  • Yang, M., & Thung, G. (2016). Classification of Trash for Recyclability Status.
  • Yang, Z., Xia, Z., Yang, G., & Lv, Y. (2022). A Garbage Classification Method Based on a Small Convolution Neural Network. Sustainability, 14(22), 14735. https://doi.org/10.3390/su142214735
  • Zhang, H., Cao, H., Zhou, Y., Gu, C., & Li, D. (2023). Hybrid deep learning model for accurate classification of solid waste in the society. Urban Climate, 49, 101485. https://doi.org/10.1016/j.uclim.2023.101485
  • Zhou, K., Oh, S.-K., Pedrycz, W., Qiu, J., Fu, Z., & Ryu, B.-G. (2022). Design of data feature-driven 1D/2D convolutional neural networks classifier for recycling black plastic wastes through laser spectroscopy. Advanced Engineering Informatics, 53, 101695. https://doi.org/10.1016/j.aei.2022.101695

Efficient Hyperparameter-Tuned Convolutional Neural Network for Waste Classification

Year 2025, Volume: 12 Issue: 3, 815 - 835, 30.09.2025
https://doi.org/10.54287/gujsa.1721478

Abstract

Today, increasing consumption habits and industrial activities have made waste management a major environmental issue on a global scale. Traditional waste classification methods cannot provide sufficient efficiency due to high labor costs and human errors. Our primary goal in this study is to design a new custom convolutional neural network (CNN) model that yields the highest accuracy and to find the optimal hyperparameters for this purpose. Using the TrashNet dataset, classification was performed in six classes: cardboard, glass, metal, paper, plastic, plastic and other wastes. We also compared the proposed custom CNN model with the seven pre-trained CNN models in the literature. According to the experimental results, the proposed custom CNN model showed the highest success with 95.03% accuracy and 95% F1 score. The results show that deep learning methods can work with high accuracy in waste classification problems and provide more reliable results compared to traditional methods.

References

  • Ahmed Khan, H., Naqvi, S. S., Alharbi, A. A. K., Alotaibi, S., & Alkhathami, M. (2024). Enhancing trash classification in smart cities using federated deep learning. Scientific Reports, 14(1), 11816. https://doi.org/10.1038/s41598-024-62003-4
  • Ajayakumar, J., Curtis, A. J., Rouzier, V., Pape, J. W., Bempah, S., Alam, M. T., Alam, Md. M., Rashid, M. H., Ali, A., & Morris, J. G. (2021). Exploring convolutional neural networks and spatial video for on-the-ground mapping in informal settlements. International Journal of Health Geographics, 20(1), 5. https://doi.org/10.1186/s12942-021-00259-z
  • Ali, M. A. S., P. P., F. R., & Salama Abd Elminaam, D. (2023). Correction: Ali et al. A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem. Mathematics 2022, 10, 2675. Mathematics, 11(9), 2195. https://doi.org/10.3390/math11092195
  • Alrayes, F. S., Asiri, M. M., Maashi, M. S., Nour, M. K., Rizwanullah, M., Osman, A. E., Drar, S., & Zamani, A. S. (2023). Waste classification using vision transformer based on multilayer hybrid convolution neural network. Urban Climate, 49, 101483. https://doi.org/10.1016/j.uclim.2023.101483
  • Çetin-Kaya, Y. (2024). Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image. Diagnostics, 14(19). https://doi.org/10.3390/diagnostics14192253
  • Cheyi, J., & Çetin Kaya, Y. (2024). Advanced CNN-Based Classification and Segmentation for Enhanced Breast Cancer Ultrasound Imaging. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 647–667. https://doi.org/10.54287/gujsa.1529857
  • Feng, Z., Yang, J., Chen, L., Chen, Z., & Li, L. (2022). An Intelligent Waste-Sorting and Recycling Device Based on Improved EfficientNet. International Journal of Environmental Research and Public Health, 19(23), 15987. https://doi.org/10.3390/ijerph192315987
  • Güneş, A., & Çetin Kaya, Y. (2024). Evrişimsel Sinir Ağları ile Görüntülerde Gürültü Türünü Saptama. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 17(1), 75–89. https://doi.org/10.54525/bbmd.1454595
  • Guo, D., Yang, Q., Zhang, Y.-D., Jiang, T., & Yan, H. (2021). Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network. Computer Modeling in Engineering & Sciences, 127(2), 599–620. https://doi.org/10.32604/cmes.2021.014119
  • Gyawali, D., Regmi, A., Shakya, A., Gautam, A., & Shrestha, S. (2020). Comparative Analysis of Multiple Deep CNN Models for Waste Classification. https://doi.org/10.48550/arXiv.2004.02168
  • Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Radeva, P. (2021). Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Reports, 7, 5248–5256. https://doi.org/10.1016/j.egyr.2021.08.028
  • Jayawickrama, N., Ojala, R., Pirhonen, J., Kivekäs, K., & Tammi, K. (2022). Classification of Trash and Valuables with Machine Vision in Shared Cars. Applied Sciences, 12(11), 5695. https://doi.org/10.3390/app12115695
  • Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., & Zavala, V. M. (2021). Using ATR-FTIR spectra and convolutional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. https://doi.org/10.1016/j.compchemeng.2021.107547
  • Kaya, M. (2025). Efficient Diagnosis of Retinal Diseases Using Convolutional Neural Networks. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 15–35. https://doi.org/10.54287/gujsa.1592915
  • Kaya, M., & Çetin-Kaya, Y. (2021). Seamless computation offloading for mobile applications using an online learning algorithm. Computing, 103(5), 771–799. https://doi.org/10.1007/s00607-020-00873-y
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. http://code.google.com/p/cuda-convnet/
  • Lapo, J. R., & Cumbicus-Pineda, O. M. (2024). Detection of recyclable solid waste using convolutional neural networks and PyTorch. IEEE Latin America Transactions, 22(6), 475–483. https://doi.org/10.1109/TLA.2024.10534304
  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Lin, K., Zhao, Y., Gao, X., Zhang, M., Zhao, C., Peng, L., Zhang, Q., & Zhou, T. (2022). Applying a deep residual network coupling with transfer learning for recyclable waste sorting. Environmental Science and Pollution Research, 29(60), 91081–91095. https://doi.org/10.1007/s11356-022-22167-w
  • Lu, G., Wang, Y., Yang, H., & Zou, J. (2020). One-dimensional convolutional neural networks for acoustic waste sorting. Journal of Cleaner Production, 271, 122393. https://doi.org/10.1016/j.jclepro.2020.122393
  • Melinte, D. O., Travediu, A.-M., & Dumitriu, D. N. (2020). Deep Convolutional Neural Networks Object Detector for Real-Time Waste Identification. Applied Sciences, 10(20), 7301. https://doi.org/10.3390/app10207301
  • Mookkaiah, S. S., Thangavelu, G., Hebbar, R., Haldar, N., & Singh, H. (2022). Design and development of smart Internet of Things–based solid waste management system using computer vision. Environmental Science and Pollution Research, 29(43), 64871–64885. https://doi.org/10.1007/s11356-022-20428-2
  • Ping, P., Xu, G., Kumala, E., & Gao, J. (2020). Smart Street Litter Detection and Classification Based on Faster R-CNN and Edge Computing. International Journal of Software Engineering and Knowledge Engineering, 30(04), 537–553. https://doi.org/10.1142/S0218194020400045
  • Qin, L. W., Ahmad, M., Ali, I., Mumtaz, R., Zaidi, S. M. H., Alshamrani, S. S., Raza, M. A., & Tahir, M. (2021). Precision Measurement for Industry 4.0 Standards towards Solid Waste Classification through Enhanced Imaging Sensors and Deep Learning Model. Wireless Communications and Mobile Computing, 2021(1). https://doi.org/10.1155/2021/9963999
  • Özatılgan, A. & Kaya, M. (2024). A Lightweight Convolutional Neural Network for Classification of Brain Tumors Using Magnetic Resonance Imaging. Sakarya University Journal of Computer and Information Sciences, 7(3). 482-493. https://doi.org/10.35377/saucis...1518139
  • Shi, C., Tan, C., Wang, T., & Wang, L. (2021). A Waste Classification Method Based on a Multilayer Hybrid Convolution Neural Network. Applied Sciences, 11(18), 8572. https://doi.org/10.3390/app11188572
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (2022). 2022 Yılı Atık İstatistikleri. https://webdosya.csb.gov.tr/db/ced/icerikler/2022-yili-atik--stat-st-k-bulten-_-20241225091056.doc
  • Tran, B.-G., & Nguyen, D.-L. (2022). Simple and Efficient Convolutional Neural Network for Trash Classification. Annals of Computer Science and Information Systems, 33, 255–260. https://doi.org/10.15439/2022R01
  • Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20–29. https://doi.org/10.1016/j.wasman.2021.08.028
  • Wang, J. (2024). Application research of image classification algorithm based on deep learning in household garbage sorting. Heliyon, 10(9), e29966. https://doi.org/10.1016/j.heliyon.2024.e29966
  • Wang, N., Wu, Q., Wang, M., He, D., & Fang, H. (2024). A novel recycling method using machine vision to assist in the processing of stacked waste fans. Journal of Material Cycles and Waste Management, 26(3), 1649–1666. https://doi.org/10.1007/s10163-024-01916-8
  • World Bank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. https://openknowledge.worldbank.org/handle/10986/30317
  • Yang, M., & Thung, G. (2016). Classification of Trash for Recyclability Status.
  • Yang, Z., Xia, Z., Yang, G., & Lv, Y. (2022). A Garbage Classification Method Based on a Small Convolution Neural Network. Sustainability, 14(22), 14735. https://doi.org/10.3390/su142214735
  • Zhang, H., Cao, H., Zhou, Y., Gu, C., & Li, D. (2023). Hybrid deep learning model for accurate classification of solid waste in the society. Urban Climate, 49, 101485. https://doi.org/10.1016/j.uclim.2023.101485
  • Zhou, K., Oh, S.-K., Pedrycz, W., Qiu, J., Fu, Z., & Ryu, B.-G. (2022). Design of data feature-driven 1D/2D convolutional neural networks classifier for recycling black plastic wastes through laser spectroscopy. Advanced Engineering Informatics, 53, 101695. https://doi.org/10.1016/j.aei.2022.101695
There are 36 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section Information and Computing Sciences
Authors

Yaren Didenaz Saraçoğlu 0009-0001-3882-190X

Yasemin Çetin Kaya 0000-0002-6745-7705

Publication Date September 30, 2025
Submission Date June 17, 2025
Acceptance Date September 11, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Saraçoğlu, Y. D., & Çetin Kaya, Y. (2025). Efficient Hyperparameter-Tuned Convolutional Neural Network for Waste Classification. Gazi University Journal of Science Part A: Engineering and Innovation, 12(3), 815-835. https://doi.org/10.54287/gujsa.1721478