Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 788 - 797, 30.09.2025
https://doi.org/10.54287/gujsa.1726229

Abstract

Project Number

KUBAP-01/2022-28

References

  • Aguiar, R., Miller, R. E., & Petel, O. E. (2020). Synthesis and characterization of partially silane-terminated polyurethanes reinforced with acid-treated halloysite nanotubes for transparent armour systems. Scientific Reports, 10, 13805. https://doi.org/10.1038/s41598-020-70661-3
  • Benlikaya, R., Slobodian, P., & Riha, P. (2013). Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. Journal of Nanomaterials, 1–10. https://doi.org/10.1155/2013/327597
  • Bertolini, M. C., Ramoa, S. D. A. S., Merlini, C., Barra, G. M. O., Soares, B. G., & Pegoretti, A. (2020). Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Frontiers in Materials, 7, 174. https://doi.org/10.3389/fmats.2020.00174
  • Chilaka, N., & Ghosh, S. (2014). Semi-IPN PEG-PU/PMMA-Montmorillonite nanocomposites: dielectric and conductivity studies. Electrochimica Acta, 134, 232–241. https://doi.org/10.1016/j.electacta.2014.04.114
  • Choi, Y., Hwang, B., Meeseepong, M., Hanif, A., Ramasundaram, S., Tran, T. Q., & Lee, N.-E. (2019). Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale. https://doi.org/10.1039/c8nr10170a
  • Coğalmış, F. T., Demirelli, K., Barım, E., Ük, N., Ünlü C., Şenkal, B., F., Dere, A., Tuncer, H., Yakuphanoğlu, F. (2024). Preparation of carbon dot/polyaniline composites as voltage based dielectric material for capacitor applications. Surfaces and Interfaces, 55, 105487. https://doi.org/10.1016/j.surfin.2024.105487
  • Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., Hu, G. H. (2012). Fundamentals, processes, and applications of high-permittivity polymer-matrix composites. Progress in Materials Science, 57, 660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001
  • Dinesh, P., Renukappa, N. M., & Siddaramaiah. (2010). Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics, 116, 128–136. https://doi.org/10.1080/10584587.2010.503519
  • Fang, Z., Huang, L., & Fu, J. (2022). Research status of graphene polyurethane composite coating. Coatings, 12(2), 264. https://doi.org/10.3390/coatings12020264
  • Gómez, J., Villaro, E., Navas, A., & Recio, I. (2017). Testing the influence of the temperature, RH and filler type and content on the universal power law for new reduced graphene oxide TPU composites. Materials Research Express, 4(10), 105020. https://doi.org/10.1088/2053-1591/aa8e11
  • Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57. https://doi.org/10.1088/0022-3727/32/14/201
  • Kalini, A., Gatos, K. G., Karahaliou, P. K., Papathanassiou, A. N., & Kyritsis, A. (2010). Probing the dielectric response of polyurethane/alumina nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 48(22), 2346–2354. https://doi.org/10.1002/polb.22120
  • Khalid, M. Y., Kamal A., Otabil, A., Mamoun, O., & Liao, K. (2023). Graphene/epoxy nanocomposites for improved fracture toughness: A focused review on toughening mechanism. Chemical Engineering Journal Advances, 16, 100537. https://doi.org/10.1016/j.ceja.2023.100537
  • Kurnaz, S. (2025). Influence of activated carbon concentration on the dielectric, conductivity and impedance properties of TPU composites. Journal of Material Science: Materials in Electronics, 36, 1083. https://doi.org/10.1007/s10854-025-15154-7
  • Liu, S., Duan, R., He, S., Liu, H., Huang, M., Liu, X., Liu, W., Zhu, C. (2022). Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. Reactive and Functional Polymers, 181, 105420. https://doi.org/10.1016/j.reactfunctpolym.2022.105420
  • Razeghi, M., & Pircheraghi, G. (2018). TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer, 148, 169–180. https://doi.org/10.1016/j.polymer.2018.06.026
  • Rüzgar, Ş., & Eratilla, V. (2024). The effect of deposition temperature on structural, morphological, and dielectric properties of yttria-doped zirconia thin films. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 44-60. https://doi.org/10.33484/sinopfbd.1369460
  • Simunec, D. P., Breedon, M., & Muhammad, F. R. (2023). Electrical capability of 3D printed unpoled polyvinylidene fluoride (PVDF)/thermoplastic polyurethane (TPU) sensors combined with carbon black and barium. Additive Manufacturing, 73, 103679. https://doi.org/10.1016/j.addma.2023.103679
  • Staszczak, M., Urbanski, L., Gradys, A., Cristea, M., & Pieczyska, E. A. (2024). Nucleation, development and healing of micro-cracks in shape memory polyurethane subjected to subsequent tension cycles. Polymers, 16(13), 1930. https://doi.org/10.3390/polym16131930
  • Thabet, A., & Salem, N. (2020). Experimental progress in electrical properties and dielectric strength of polyvinyl chloride thin films under thermal conditions. Transactions on Electrical and Electronic Materials, 21, 165–174. https://doi.org/10.1007/s42341-019-00163-1
  • Walter, J., Uthayakumar, M., Balamurugan, P., Mierzwinski, D. (2021). The variable frequency conductivity of geopolymers during the long agieng period. Materials, 14(9), 5648. https://doi.org/10.3390/ma14195648
  • Wang, Y., Zhou, Z., Zhang, J., Tang, J., Wu, P., Wang, K., & Zhao, Y. (2020). Properties of graphene-thermoplastic polyurethane flexible conductive film. Coatings, 10(4), 400. https://doi.org/10.3390/coatings10040400
  • Zhang, Y., Seveyrat, L., & Lebrun, L. (2021). Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene/polyurethane nanocomposites. Composites Science and Technology, 211, 108843. https://doi.org/10.1016/j.compscitech.2021.108843
  • Zhou, Z.-M., Wang, K., Lin, K., Wang, Y.-H., & Li, J.-Z. (2021). Influence of characteristics of thermoplastic polyurethane on graphene-thermoplastic polyurethane composite film. Micromachines, 12(2), 129. https://doi.org/10.3390/mi12020129

Tailoring Admittance, Conductance, and Susceptance in TPU/Activated Carbon Films for Flexible Electronics

Year 2025, Volume: 12 Issue: 3, 788 - 797, 30.09.2025
https://doi.org/10.54287/gujsa.1726229

Abstract

In this study, thermoplastic polyurethane (TPU) composites with varying amounts of activated carbon (AC) (0, 1, 3, 5, 7, and 10 wt%) were fabricated using a solvent-casting method. Scanning electron microscopy (SEM) revealed homogeneous filler dispersion up to intermediate loadings (3-5 wt%), while higher contents (7-10 wt%) led to surface cracks and particle agglomerations. Fourier-transform infrared spectroscopy (FTIR) results showed no evidence of strong chemical bonding between AC particles and the TPU matrix, although minor spectral shifts were consistent with weak physical interactions. Thermal gravimetric analysis (TGA) indicated improved thermal stability at higher AC loadings. Tensile tests showed enhanced mechanical strength up to 5 wt%, though flexibility decreased at higher concentrations (7–10 wt%). Electrical characterization (admittance (Y), conductance (G), and susceptance (B)) from 1 kHz–10 MHzrevealed a clear percolation threshold (~7 wt%), where conductivity sharply increased due to conductive network formation. At 10 MHz, the composite with 10 wt% AC exhibited the highest performance (Y ~114.8 µS, G ~58.8 µS, |B| ~114.1 µS). Jonscher power-law analysis indicated hopping conduction below 7 wt% AC, whereas the 10 wt% sample transitioned into quasi-metallic conduction behavior due to conductive network formation.

Supporting Institution

Kastamonu University Scientific Research Projects Coordination Department

Project Number

KUBAP-01/2022-28

References

  • Aguiar, R., Miller, R. E., & Petel, O. E. (2020). Synthesis and characterization of partially silane-terminated polyurethanes reinforced with acid-treated halloysite nanotubes for transparent armour systems. Scientific Reports, 10, 13805. https://doi.org/10.1038/s41598-020-70661-3
  • Benlikaya, R., Slobodian, P., & Riha, P. (2013). Enhanced strain-dependent electrical resistance of polyurethane composites with embedded oxidized multiwalled carbon nanotube networks. Journal of Nanomaterials, 1–10. https://doi.org/10.1155/2013/327597
  • Bertolini, M. C., Ramoa, S. D. A. S., Merlini, C., Barra, G. M. O., Soares, B. G., & Pegoretti, A. (2020). Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Frontiers in Materials, 7, 174. https://doi.org/10.3389/fmats.2020.00174
  • Chilaka, N., & Ghosh, S. (2014). Semi-IPN PEG-PU/PMMA-Montmorillonite nanocomposites: dielectric and conductivity studies. Electrochimica Acta, 134, 232–241. https://doi.org/10.1016/j.electacta.2014.04.114
  • Choi, Y., Hwang, B., Meeseepong, M., Hanif, A., Ramasundaram, S., Tran, T. Q., & Lee, N.-E. (2019). Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale. https://doi.org/10.1039/c8nr10170a
  • Coğalmış, F. T., Demirelli, K., Barım, E., Ük, N., Ünlü C., Şenkal, B., F., Dere, A., Tuncer, H., Yakuphanoğlu, F. (2024). Preparation of carbon dot/polyaniline composites as voltage based dielectric material for capacitor applications. Surfaces and Interfaces, 55, 105487. https://doi.org/10.1016/j.surfin.2024.105487
  • Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., Hu, G. H. (2012). Fundamentals, processes, and applications of high-permittivity polymer-matrix composites. Progress in Materials Science, 57, 660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001
  • Dinesh, P., Renukappa, N. M., & Siddaramaiah. (2010). Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics, 116, 128–136. https://doi.org/10.1080/10584587.2010.503519
  • Fang, Z., Huang, L., & Fu, J. (2022). Research status of graphene polyurethane composite coating. Coatings, 12(2), 264. https://doi.org/10.3390/coatings12020264
  • Gómez, J., Villaro, E., Navas, A., & Recio, I. (2017). Testing the influence of the temperature, RH and filler type and content on the universal power law for new reduced graphene oxide TPU composites. Materials Research Express, 4(10), 105020. https://doi.org/10.1088/2053-1591/aa8e11
  • Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), R57. https://doi.org/10.1088/0022-3727/32/14/201
  • Kalini, A., Gatos, K. G., Karahaliou, P. K., Papathanassiou, A. N., & Kyritsis, A. (2010). Probing the dielectric response of polyurethane/alumina nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 48(22), 2346–2354. https://doi.org/10.1002/polb.22120
  • Khalid, M. Y., Kamal A., Otabil, A., Mamoun, O., & Liao, K. (2023). Graphene/epoxy nanocomposites for improved fracture toughness: A focused review on toughening mechanism. Chemical Engineering Journal Advances, 16, 100537. https://doi.org/10.1016/j.ceja.2023.100537
  • Kurnaz, S. (2025). Influence of activated carbon concentration on the dielectric, conductivity and impedance properties of TPU composites. Journal of Material Science: Materials in Electronics, 36, 1083. https://doi.org/10.1007/s10854-025-15154-7
  • Liu, S., Duan, R., He, S., Liu, H., Huang, M., Liu, X., Liu, W., Zhu, C. (2022). Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. Reactive and Functional Polymers, 181, 105420. https://doi.org/10.1016/j.reactfunctpolym.2022.105420
  • Razeghi, M., & Pircheraghi, G. (2018). TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer, 148, 169–180. https://doi.org/10.1016/j.polymer.2018.06.026
  • Rüzgar, Ş., & Eratilla, V. (2024). The effect of deposition temperature on structural, morphological, and dielectric properties of yttria-doped zirconia thin films. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 44-60. https://doi.org/10.33484/sinopfbd.1369460
  • Simunec, D. P., Breedon, M., & Muhammad, F. R. (2023). Electrical capability of 3D printed unpoled polyvinylidene fluoride (PVDF)/thermoplastic polyurethane (TPU) sensors combined with carbon black and barium. Additive Manufacturing, 73, 103679. https://doi.org/10.1016/j.addma.2023.103679
  • Staszczak, M., Urbanski, L., Gradys, A., Cristea, M., & Pieczyska, E. A. (2024). Nucleation, development and healing of micro-cracks in shape memory polyurethane subjected to subsequent tension cycles. Polymers, 16(13), 1930. https://doi.org/10.3390/polym16131930
  • Thabet, A., & Salem, N. (2020). Experimental progress in electrical properties and dielectric strength of polyvinyl chloride thin films under thermal conditions. Transactions on Electrical and Electronic Materials, 21, 165–174. https://doi.org/10.1007/s42341-019-00163-1
  • Walter, J., Uthayakumar, M., Balamurugan, P., Mierzwinski, D. (2021). The variable frequency conductivity of geopolymers during the long agieng period. Materials, 14(9), 5648. https://doi.org/10.3390/ma14195648
  • Wang, Y., Zhou, Z., Zhang, J., Tang, J., Wu, P., Wang, K., & Zhao, Y. (2020). Properties of graphene-thermoplastic polyurethane flexible conductive film. Coatings, 10(4), 400. https://doi.org/10.3390/coatings10040400
  • Zhang, Y., Seveyrat, L., & Lebrun, L. (2021). Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene/polyurethane nanocomposites. Composites Science and Technology, 211, 108843. https://doi.org/10.1016/j.compscitech.2021.108843
  • Zhou, Z.-M., Wang, K., Lin, K., Wang, Y.-H., & Li, J.-Z. (2021). Influence of characteristics of thermoplastic polyurethane on graphene-thermoplastic polyurethane composite film. Micromachines, 12(2), 129. https://doi.org/10.3390/mi12020129
There are 24 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other), Electronic Sensors
Journal Section Electronics, Sensors and Digital Hardware
Authors

Sedat Kurnaz 0000-0003-3657-2628

Project Number KUBAP-01/2022-28
Publication Date September 30, 2025
Submission Date June 25, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Kurnaz, S. (2025). Tailoring Admittance, Conductance, and Susceptance in TPU/Activated Carbon Films for Flexible Electronics. Gazi University Journal of Science Part A: Engineering and Innovation, 12(3), 788-797. https://doi.org/10.54287/gujsa.1726229