Research Article
BibTex RIS Cite

Modeling sound absorption coefficient of porous asphalt pavements: an example of thickness and mixture ratio

Year 2022, , 805 - 825, 30.12.2022
https://doi.org/10.29109/gujsc.1101133

Abstract

Environmental noise should be kept under control due to its negative effects on human health. The sound absorption performance of asphalt pavements is an important parameter in environmental noise control. Increasing the sound absorption performance of asphalt pavements can reduce the environmental noise level. In this study, increasing the sound absorption coefficient in asphalt pavements has been investigated. It is observed that the sound absorption coefficient can be increased by asphalt pavements thickness change or the asphalt pavement mixture content change. In the research, the sound absorption coefficient measurement results of porous asphalt pavements were modeled and analyzed in the MATLAB program. The use of 0%, 25%, 50%, 75%, and 100% basic oxygen furnace slag aggregate ratio in the aggregate mixture in asphalt pavement was investigated, and the sound absorption coefficient of asphalt pavements of different mixtures was modeled in the MATLAB program. Moreover, Sound absorption performances of 3 cm, 6.35 cm, and 10 cm thick asphalt pavements were examined according to 1/3 octave band frequencies, and the sound absorption coefficient was modeled in MATLAB program by curve fitting method according to varying asphalt thicknesses. With the help of curve models, the sound absorption coefficient can be estimated according to the varying asphalt thickness value. The use of basic oxygen furnace slag as aggregate in the asphalt pavement mixture can increase the sound absorption performance not only at low frequencies values but also at high-frequency values. The increase in thickness of porous asphalt pavements can improve the sound absorption performance at low frequencies.

References

  • Bozkurt, T.S., Demirkale, S.Y., The field study and numerical simulation of industrial noise mapping, Journal of Building Engineering, Volume 9, January 2017, Pages 60-75, https://doi.org/10.1016/j.jobe.2016.11.007
  • World Health Organization, (2018), Environmental Noise Guidelines for the European Region, ISBN 978 92 890 5356 3
  • Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • Kleizienė R., Šernas O., Vaitkus A., Simanavičienė R., Asphalt Pavement Acoustic Performance Model. Sustainability. 2019; 11(10):2938. https://doi.org/10.3390/su11102938
  • Gilani, T.A., Mir, M.S. A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environ Sci Pollut Res 28, 63045–63064 (2021). https://doi.org/10.1007/s11356-021-15208-3
  • ISO 9613–2:1996, Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation
  • Bozkurt, T.S., Preparation of Industrial Noise Mapping and Improvement of Environmental Quality, Current Pollution Reports (2021), Volume 7, Pages: 325 - 343, https://doi.org/10.1007/s40726-021-00195-3
  • Kotzen, B., English, C., (2009), Environmental Noise Barriers, Second edition, Taylor & Francis Group, ISBN 0-203-93138-6 Master e-book ISBN, ISBN10: 0–203–93138–6 (ebook), ISBN13: 978–0–203–93138–7 (ebook)
  • Barros, A.G.D., Kampen, J.K., Vuye, C., The Impact of Thin Asphalt Layers as a Road Traffic Noise Intervention in an Urban Environment, Sustainability 2021, 13, 12561. https://doi.org/10.3390/su132212561
  • Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • Chu L., Fwa T.F., Functional sustainability of single- and double-layer porous asphalt pavements, Construction and Building Materials 197 (2019) 436–443, https://doi.org/10.1016/j.conbuildmat.2018.11.162
  • Wang, H., Ding, Y., Liao, G., Ai, C., Modeling and Optimization of Acoustic Absorption for Porous Asphalt Concrete, Journal of Engineering Mechanics, Volume 142, Issue 4, April 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001037
  • Liu, M., Huang, X., Xue, G., Effects of double layer porous asphalt pavement of urban streets on noise reduction, International Journal of Sustainable Built Environment (2016) 5, 183–196, https://doi.org/10.1016/j.ijsbe.2016.02.001
  • Zhang, H., Liu, Z., Meng, X., Noise reduction characteristics of asphalt pavement based on indoor simulation tests, Construction and Building Materials 215 (2019) 285–297, https://doi.org/10.1016/j.conbuildmat.2019.04.220
  • Kalauni, K., Pawar, S.J., A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26, 1795–1819 (2019). https://doi.org/10.1007/s10934-019-00774-2
  • Gao, L., Wang, Z., Xie, J., Wang, Z., Li, H., Study on the sound absorption coefficient model for porous asphalt pavements based on a CT scanning technique, Construction and Building Materials 230 (2020) 117019, https://doi.org/10.1016/j.conbuildmat.2019.117019
  • Mikhailenko, P., Piao, Z., Kakar, M.R., Athari, S., Bueno, M., Poulikakos, L.D., Effect of waste PET and CR as sand replacement on the durability and acoustical properties of semi dense asphalt (SDA) mixtures, Sustainable Materials and Technologies 29 (2021) e00295, https://doi.org/10.1016/j.susmat.2021.e00295
  • Alber, S., Ressel, W., Liu, P., Hu, J., Wang, D., Oeser, M., Uribe, D., Steeb, H., Investigation of microstructure characteristics of porous asphalt with relevance to acoustic pavement performance, International Journal of Transportation Science and Technology 7 (2018) 199–207, https://doi.org/10.1016/j.ijtst.2018.06.001
  • Chu L., Fwa T.F., Functional sustainability of single- and double-layer porous asphalt pavements, Construction and Building Materials 197 (2019) 436–443, https://doi.org/10.1016/j.conbuildmat.2018.11.162
  • Shen, D.-H., Wu, D.-H., Du, J.-C., Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials 23(1), 453–461 (2009), https://doi.org/10.1016/j.conbuildmat.2007.11.001
  • ISO 354:2003, Acoustics —Measurement of sound absorption in a reverberation room
  • ISO 10534-2, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 2: Transfer-function method
  • Everest, F. A., Pohlmann, K. C., (2009), Master Handbook of Acoustic, Fifth Edition, McGraw-Hill, ISBN: 978-0-07-160333-1
  • ASTM E1050, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System
  • Li, M., Keulen, W.N., Tijs, E., Ven, M.V.D., Molenaar, A., Sound absorption measurement of road surface with in situ technology, Applied Acoustics 88 (2015) 12–2, http://dx.doi.org/10.1016/j.apacoust.2014.07.009
  • Vaitkus, A., Čygas, D., Vorobjovas, V., Andriejauskas, T., Traffic/Road Noise Mitigation under Modified Asphalt Pavements, Transportation Research Procedia 14 (2016) 2698 – 2703, https://doi.org/10.1016/j.trpro.2016.05.446
  • Vaitkus A., Andriejauskas T., Vorobjovas V., Jagniatinskis A., Fiks, B., Zofka, E., Asphalt wearing course optimization for road traffic noise reduction, Construction and Building Materials, Volume 152, 15 October 2017, Pages 345-356, https://doi.org/10.1016/j.conbuildmat.2017.06.130
  • Ding Y., Wang H., FEM-BEM analysis of tyre-pavement noise on porous asphalt surfaces with different textures, International Journal of Pavement Engineering, 2019, VOL. 20, NO. 9, 1090–1097, https://doi.org/10.1080/10298436.2017.1388507
  • Gardziejczyk, W., Jaskula, P., Ejsmont, J.A., Motylewicz, M., Stienss, M., Mioduszewski, P., Gierasimiuk, P., Zawadzki, M., Investigation of Acoustic Properties of Poroelastic Asphalt Mixtures in Laboratory and Field Conditions, Materials 2021, 14, 2649, https://doi.org/10.3390/ma14102649
  • Kolodziej, V.M., Triches, J.S. Ledezma, G.C., Carlesso, L.M., Jardin, L.M., Knabben, R.M., Functional and durability properties evaluation of open graded asphalt mixes, Transport Infrastructure and Systems, 2017, Taylor & Francis Group, London, ISBN 978-1-138-03009-1
  • Morcillo, M.A., Hidalgo, M.E., Pastrana, M.d.C., García, D., Torres, J., Arroyo, M.B., LIFE SOUNDLESS: New Generation of Eco-Friendly Asphalt with Recycled Materials. Environments 2019, 6, 48. https://doi.org/10.3390/environments6040048
  • Mavridou, S., Kehagia, F., Environmental Noise Performance of Rubberized Asphalt Mixtures: Lamia’s case study, Procedia Environmental Sciences 38 (2017) 804 – 811, https://doi.org/10.1016/j.proenv.2017.03.165
  • Vázquez, V.F., Terán, F., Huertas, P., Paje, S.E., Asphalt Pavement With High Content Of Crumb Rubber. Acoustic Assessment, WASTES: Solutions, Treatments and Opportunities, 4th International Conference, September 2017, ISSN 2183-0568
  • Wang, W., Cheng, Y., Chen, H., Tan, G., Lv, Z., Bai, Y., Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber. Sustainability 2019, 11, 5282. https://doi.org/10.3390/su11195282
  • Chu L., Fwa, T. F., Tan, K.H., Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement, Construction and Building Materials, Volume 141, 15 June 2017, Pages 402-409, https://doi.org/10.1016/j.conbuildmat.2017.03.027
  • Wang, Z., Xie, J., Gao, L., Liu, M., Liu, Y., Improvement of acoustic model and structural optimization design of porous asphalt concrete based on meso-structure research, Volume 265, 30 December 2020, 120327, https://doi.org/10.1016/j.conbuildmat.2020.120327
  • Peng, B., Han, S., Han X., (2021): Laboratory and field evaluation of noise characteristics of porous asphalt pavement, International Journal of Pavement Engineering, https://doi.org/10.1080/10298436.2021.1893319
  • Zhao, C., Wang, P., Wang, L., Liu, D.: Reducing railway noise with porous sound-absorbing concrete slabs. Adv. Mater. Sci. Eng. 2014, 11 (2014). https://doi.org/10.1155/2014/206549
  • Oancea, I., Bujoreanu, C., Budescu, M., Benchea, M., Grădinaru, M., C., Considerations on sound absorption coefficient of sustainable concrete with different waste replacements, Journal of Cleaner Production, Volume 203, 1 December 2018, Pages 301-312, https://doi.org/10.1016/j.jclepro.2018.08.273
  • Bozkurt, T.S., Demirkale, S.Y., Laboratory analyses and numerical simulation for sound absorption of plasters in historical buildings, Journal of Cultural Heritage, Volume 36, March–April 2019, Pages 103-117, https://doi.org/10.1016/j.culher.2018.09.012
  • Bozkurt, T.S., Demirkale, S.Y., The laboratory analyses for the plasters prepared with river sand aggregate and hydraulic lime binder, Construction and Building Materials. 190, 691–709 (2018), https://doi.org/10.1016/j.conbuildmat.2018.09.073
  • Bozkurt, T.S., Demirkale S.Y., Investigation and development of sound absorption of plasters prepared with pumice aggregate and natural hydraulic lime binder, Applied Acoustics, Volume 170, 15 December 2020, 107521, https://doi.org/10.1016/j.apacoust.2020.107521
  • Bozkurt, T.S., Demirkale, S.Y., The experimental research of sound absorption in plasters produced with perlite aggregate and natural hydraulic lime binder. Acoust Aust 48, 375–393 (2020). https://doi.org/10.1007/s40857-020-00203-4
  • Ginn K. B., (1978), ARCHITECTURAL ACOUSTICS, Brüel δ Kjaer, ikinci Baskı, ISBN: 87 87355 24 8
  • Mehta, M., Johnson, J. and Rocaford J., (1999), Architectural Acoustics Principles and Design, Prentice Hall, ISBN: 0-13-793795-4
  • Barron, R. F., (2003), Industrial Noise Control and Acoustics, Marcel Dekker Inc., Newyork, Basel. ISBN:0-8247-0701-X
  • Beranek, L. L., Ver, I. L., (2006), Noise and Vibration Control Engineering Principles and Applications, John Wiley&Sons, Inc., ISBN-13: 978-0471-44942-3 ve ISBN-10: 0471-44942-3
  • Jaramillo, A. M., Stell, C., (2015), Architectural Acoustics, Taylor & Francis Group, ISBN: 978-1-315-75284-6 (ebk)
  • ISO 717-1:2013, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation

Gözenekli asfalt kaplamalarda ses yutma katsayısının modellenmesi: kalınlık ve karışım oranı örneği

Year 2022, , 805 - 825, 30.12.2022
https://doi.org/10.29109/gujsc.1101133

Abstract

Çevresel gürültünün insan sağlığı üzerindeki olumsuz etkileri nedeniyle kontrol altında tutulması gerekir. Çevresel gürültü kontrolünde asfalt kaplamaların ses yutma performansı önemli bir parametredir. Asfalt kaplamalardaki ses yutma performansının arttırılması çevresel gürültü düzeyini azaltabilmektedir. Bu çalışmada asfalt kaplamalarda ses yutma katsayısının arttırılması araştırılmıştır. Asfalt kaplama kalınlık değişimi veya asfalt kaplama karışım içeriği değişikliği ile ses yutma katsayısının artırılabileceği gözlemlenmiştir. Araştırmada, gözenekli asfalt kaplamaların ses yutma katsayısı ölçüm sonuçları MATLAB programında modellenmiş ve analiz edilmiştir. Agrega karışım içerinde %0, %25, %50, %75 ve %100 oranlarında bazik oksijen fırını cürufu agreganın asfalt kaplamada kullanılması araştırılmış ve farklı karışımlara ait asfalt kaplamaların ses yutma katsayısı MATLAB programında modellenmiştir. Ayrıca, 3 cm, 6,35 cm ve 10 cm kalınlığındaki asfalt kaplamaların ses yutma performansları 1/3 oktav bant frekanslarına göre incelenmiş ve değişen asfalt kalınlıklarına göre ses yutma katsayısı eğri uyarlama yöntemi ile MATLAB programında modellenmiştir. Eğri modelleri yardımıyla, değişen asfalt kalınlık değerine göre ses yutma katsayısı öngörülebilecektir. Asfalt kaplama karışımında agrega olarak bazik oksijen fırını cürufunun kullanılması, sadece düşük frekans değerlerinde değil, aynı zamanda yüksek frekans değerlerinde de ses yutma performansını arttırabilmektedir. Gözenekli asfalt kaplamalardaki kalınlık artışı düşük frekanslardaki ses yutma performansını iyileştirebilmektedir.

References

  • Bozkurt, T.S., Demirkale, S.Y., The field study and numerical simulation of industrial noise mapping, Journal of Building Engineering, Volume 9, January 2017, Pages 60-75, https://doi.org/10.1016/j.jobe.2016.11.007
  • World Health Organization, (2018), Environmental Noise Guidelines for the European Region, ISBN 978 92 890 5356 3
  • Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • Kleizienė R., Šernas O., Vaitkus A., Simanavičienė R., Asphalt Pavement Acoustic Performance Model. Sustainability. 2019; 11(10):2938. https://doi.org/10.3390/su11102938
  • Gilani, T.A., Mir, M.S. A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environ Sci Pollut Res 28, 63045–63064 (2021). https://doi.org/10.1007/s11356-021-15208-3
  • ISO 9613–2:1996, Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation
  • Bozkurt, T.S., Preparation of Industrial Noise Mapping and Improvement of Environmental Quality, Current Pollution Reports (2021), Volume 7, Pages: 325 - 343, https://doi.org/10.1007/s40726-021-00195-3
  • Kotzen, B., English, C., (2009), Environmental Noise Barriers, Second edition, Taylor & Francis Group, ISBN 0-203-93138-6 Master e-book ISBN, ISBN10: 0–203–93138–6 (ebook), ISBN13: 978–0–203–93138–7 (ebook)
  • Barros, A.G.D., Kampen, J.K., Vuye, C., The Impact of Thin Asphalt Layers as a Road Traffic Noise Intervention in an Urban Environment, Sustainability 2021, 13, 12561. https://doi.org/10.3390/su132212561
  • Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • Chu L., Fwa T.F., Functional sustainability of single- and double-layer porous asphalt pavements, Construction and Building Materials 197 (2019) 436–443, https://doi.org/10.1016/j.conbuildmat.2018.11.162
  • Wang, H., Ding, Y., Liao, G., Ai, C., Modeling and Optimization of Acoustic Absorption for Porous Asphalt Concrete, Journal of Engineering Mechanics, Volume 142, Issue 4, April 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001037
  • Liu, M., Huang, X., Xue, G., Effects of double layer porous asphalt pavement of urban streets on noise reduction, International Journal of Sustainable Built Environment (2016) 5, 183–196, https://doi.org/10.1016/j.ijsbe.2016.02.001
  • Zhang, H., Liu, Z., Meng, X., Noise reduction characteristics of asphalt pavement based on indoor simulation tests, Construction and Building Materials 215 (2019) 285–297, https://doi.org/10.1016/j.conbuildmat.2019.04.220
  • Kalauni, K., Pawar, S.J., A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26, 1795–1819 (2019). https://doi.org/10.1007/s10934-019-00774-2
  • Gao, L., Wang, Z., Xie, J., Wang, Z., Li, H., Study on the sound absorption coefficient model for porous asphalt pavements based on a CT scanning technique, Construction and Building Materials 230 (2020) 117019, https://doi.org/10.1016/j.conbuildmat.2019.117019
  • Mikhailenko, P., Piao, Z., Kakar, M.R., Athari, S., Bueno, M., Poulikakos, L.D., Effect of waste PET and CR as sand replacement on the durability and acoustical properties of semi dense asphalt (SDA) mixtures, Sustainable Materials and Technologies 29 (2021) e00295, https://doi.org/10.1016/j.susmat.2021.e00295
  • Alber, S., Ressel, W., Liu, P., Hu, J., Wang, D., Oeser, M., Uribe, D., Steeb, H., Investigation of microstructure characteristics of porous asphalt with relevance to acoustic pavement performance, International Journal of Transportation Science and Technology 7 (2018) 199–207, https://doi.org/10.1016/j.ijtst.2018.06.001
  • Chu L., Fwa T.F., Functional sustainability of single- and double-layer porous asphalt pavements, Construction and Building Materials 197 (2019) 436–443, https://doi.org/10.1016/j.conbuildmat.2018.11.162
  • Shen, D.-H., Wu, D.-H., Du, J.-C., Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials 23(1), 453–461 (2009), https://doi.org/10.1016/j.conbuildmat.2007.11.001
  • ISO 354:2003, Acoustics —Measurement of sound absorption in a reverberation room
  • ISO 10534-2, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 2: Transfer-function method
  • Everest, F. A., Pohlmann, K. C., (2009), Master Handbook of Acoustic, Fifth Edition, McGraw-Hill, ISBN: 978-0-07-160333-1
  • ASTM E1050, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System
  • Li, M., Keulen, W.N., Tijs, E., Ven, M.V.D., Molenaar, A., Sound absorption measurement of road surface with in situ technology, Applied Acoustics 88 (2015) 12–2, http://dx.doi.org/10.1016/j.apacoust.2014.07.009
  • Vaitkus, A., Čygas, D., Vorobjovas, V., Andriejauskas, T., Traffic/Road Noise Mitigation under Modified Asphalt Pavements, Transportation Research Procedia 14 (2016) 2698 – 2703, https://doi.org/10.1016/j.trpro.2016.05.446
  • Vaitkus A., Andriejauskas T., Vorobjovas V., Jagniatinskis A., Fiks, B., Zofka, E., Asphalt wearing course optimization for road traffic noise reduction, Construction and Building Materials, Volume 152, 15 October 2017, Pages 345-356, https://doi.org/10.1016/j.conbuildmat.2017.06.130
  • Ding Y., Wang H., FEM-BEM analysis of tyre-pavement noise on porous asphalt surfaces with different textures, International Journal of Pavement Engineering, 2019, VOL. 20, NO. 9, 1090–1097, https://doi.org/10.1080/10298436.2017.1388507
  • Gardziejczyk, W., Jaskula, P., Ejsmont, J.A., Motylewicz, M., Stienss, M., Mioduszewski, P., Gierasimiuk, P., Zawadzki, M., Investigation of Acoustic Properties of Poroelastic Asphalt Mixtures in Laboratory and Field Conditions, Materials 2021, 14, 2649, https://doi.org/10.3390/ma14102649
  • Kolodziej, V.M., Triches, J.S. Ledezma, G.C., Carlesso, L.M., Jardin, L.M., Knabben, R.M., Functional and durability properties evaluation of open graded asphalt mixes, Transport Infrastructure and Systems, 2017, Taylor & Francis Group, London, ISBN 978-1-138-03009-1
  • Morcillo, M.A., Hidalgo, M.E., Pastrana, M.d.C., García, D., Torres, J., Arroyo, M.B., LIFE SOUNDLESS: New Generation of Eco-Friendly Asphalt with Recycled Materials. Environments 2019, 6, 48. https://doi.org/10.3390/environments6040048
  • Mavridou, S., Kehagia, F., Environmental Noise Performance of Rubberized Asphalt Mixtures: Lamia’s case study, Procedia Environmental Sciences 38 (2017) 804 – 811, https://doi.org/10.1016/j.proenv.2017.03.165
  • Vázquez, V.F., Terán, F., Huertas, P., Paje, S.E., Asphalt Pavement With High Content Of Crumb Rubber. Acoustic Assessment, WASTES: Solutions, Treatments and Opportunities, 4th International Conference, September 2017, ISSN 2183-0568
  • Wang, W., Cheng, Y., Chen, H., Tan, G., Lv, Z., Bai, Y., Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber. Sustainability 2019, 11, 5282. https://doi.org/10.3390/su11195282
  • Chu L., Fwa, T. F., Tan, K.H., Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement, Construction and Building Materials, Volume 141, 15 June 2017, Pages 402-409, https://doi.org/10.1016/j.conbuildmat.2017.03.027
  • Wang, Z., Xie, J., Gao, L., Liu, M., Liu, Y., Improvement of acoustic model and structural optimization design of porous asphalt concrete based on meso-structure research, Volume 265, 30 December 2020, 120327, https://doi.org/10.1016/j.conbuildmat.2020.120327
  • Peng, B., Han, S., Han X., (2021): Laboratory and field evaluation of noise characteristics of porous asphalt pavement, International Journal of Pavement Engineering, https://doi.org/10.1080/10298436.2021.1893319
  • Zhao, C., Wang, P., Wang, L., Liu, D.: Reducing railway noise with porous sound-absorbing concrete slabs. Adv. Mater. Sci. Eng. 2014, 11 (2014). https://doi.org/10.1155/2014/206549
  • Oancea, I., Bujoreanu, C., Budescu, M., Benchea, M., Grădinaru, M., C., Considerations on sound absorption coefficient of sustainable concrete with different waste replacements, Journal of Cleaner Production, Volume 203, 1 December 2018, Pages 301-312, https://doi.org/10.1016/j.jclepro.2018.08.273
  • Bozkurt, T.S., Demirkale, S.Y., Laboratory analyses and numerical simulation for sound absorption of plasters in historical buildings, Journal of Cultural Heritage, Volume 36, March–April 2019, Pages 103-117, https://doi.org/10.1016/j.culher.2018.09.012
  • Bozkurt, T.S., Demirkale, S.Y., The laboratory analyses for the plasters prepared with river sand aggregate and hydraulic lime binder, Construction and Building Materials. 190, 691–709 (2018), https://doi.org/10.1016/j.conbuildmat.2018.09.073
  • Bozkurt, T.S., Demirkale S.Y., Investigation and development of sound absorption of plasters prepared with pumice aggregate and natural hydraulic lime binder, Applied Acoustics, Volume 170, 15 December 2020, 107521, https://doi.org/10.1016/j.apacoust.2020.107521
  • Bozkurt, T.S., Demirkale, S.Y., The experimental research of sound absorption in plasters produced with perlite aggregate and natural hydraulic lime binder. Acoust Aust 48, 375–393 (2020). https://doi.org/10.1007/s40857-020-00203-4
  • Ginn K. B., (1978), ARCHITECTURAL ACOUSTICS, Brüel δ Kjaer, ikinci Baskı, ISBN: 87 87355 24 8
  • Mehta, M., Johnson, J. and Rocaford J., (1999), Architectural Acoustics Principles and Design, Prentice Hall, ISBN: 0-13-793795-4
  • Barron, R. F., (2003), Industrial Noise Control and Acoustics, Marcel Dekker Inc., Newyork, Basel. ISBN:0-8247-0701-X
  • Beranek, L. L., Ver, I. L., (2006), Noise and Vibration Control Engineering Principles and Applications, John Wiley&Sons, Inc., ISBN-13: 978-0471-44942-3 ve ISBN-10: 0471-44942-3
  • Jaramillo, A. M., Stell, C., (2015), Architectural Acoustics, Taylor & Francis Group, ISBN: 978-1-315-75284-6 (ebk)
  • ISO 717-1:2013, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Tarık Serhat Bozkurt 0000-0001-5642-4986

Ahmet Sertaç Karakaş 0000-0002-0840-2878

Publication Date December 30, 2022
Submission Date April 10, 2022
Published in Issue Year 2022

Cite

APA Bozkurt, T. S., & Karakaş, A. S. (2022). Gözenekli asfalt kaplamalarda ses yutma katsayısının modellenmesi: kalınlık ve karışım oranı örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(4), 805-825. https://doi.org/10.29109/gujsc.1101133

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526