Review
BibTex RIS Cite

Defects, Mechanical Properties and Surface Roughness of AlSi10Mg Alloy Parts Produced by Selective Laser Melting (SLM) Method-A Review

Year 2022, , 368 - 390, 30.06.2022
https://doi.org/10.29109/gujsc.1130098

Abstract

Metal-based additive manufacturing is a modern manufacturing process in which three-dimensional (3D) objects are fabricated by layer-by-layer melting of metallic powder or wire with an energy source. Selective laser melting (SLM) method is used in both scientific and industrial fields as it allows the production of complex and light structures. AlSi10Mg alloy is widely used in aerospace, automotive, marine and medical industries, as well as in various applications that require special designs and is one of the prominent materials in SLM research. The quality of a product produced by the SLM method requires optimization of manufacturing parameters (laser power, scanning speed, scanning distance, layer thickness) that affect the energy density required for melting. With the use of inappropriate manufacturing parameters, internal stresses arising from deformation mechanisms occur due to the process and distortion, cracking and dimensional changes occur on the part. Variables such as powder material properties, uneven distribution of powder layer, deformation during manufacturing, changes in laser beam can cause metallurgical pores. Any defects that occur in the manufacturing process have a negative effect on the mechanical properties and surface quality of the final part. In this study, the results obtained by researching the studies in the literature to produce parts with high density, high strength properties and high surface quality from AlSi10Mg alloy by selective laser melting method are presented. As a result of the research, it has been determined that energy density is more decisive on product quality. It has been determined that the ideal energy density for the least porosity in the products is in the range of 50-75 J/mm3, and the AlSi10Mg alloy parts produced by additive manufacturing show better strength properties compared to those produced by the casting method.

References

  • [1] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, Kaçar, R. “PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu”, Politeknik Dergisi, 23(1): 73-79, (2020).
  • [2] C. Kiraz, H. K. Sezer, İ. Şahin, “Kuyumculuk sektöründe 3B baskı tasarım tekniklerinin özgürlüğünden faydalanıldığında sektöre getirileri”, International Journal of 3D Printing Technologies and Digital Industry, 2(2): 46-58, (2018).
  • [3] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting”, Additive manufacturing, 1, 77-86, (2014).
  • [4] N. Hutasoit, R. A. Rashid, S. Palanisamy, A. Duguid, “Effect of build orientation and post-build heat treatment on the mechanical properties of cold spray additively manufactured copper parts”, The International Journal of Advanced Manufacturing Technology, 110(9): 2341-2357, (2020).
  • [5] M. Günay, İ. Yeşildağ, “Mechanical Properties of Low Carbon Steel Produced by GMAW-based Additive Manufacturing”, Gazi Mühendislik Bilimleri Dergisi, 7(3): 175-182, (2021).
  • [6] H. Dedeakayoğulları, A. Kaçal, “Eklemeli İmalat Teknolojileri ve Kullanılan Talaşlı İmalat Yöntemleri Üzerine Yapılan Çalışmaların Değerlendirilmesi”, İmalat Teknolojileri ve Uygulamaları, 1(1): 1-12, (2020).
  • [7] http://my3dconcepts.com/explore/how-3d- printing-works, 20.01.2022.
  • [8] A. N. Jinoop, S. K. Subbu, R. A. Kumar, “Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718”, International Journal of Additive and Subtractive Materials Manufacturing, 2(1): 1-12, (2018).
  • [9] L.Yang, “Additive manufacturing of metals: the technology, materials, design and production”, Cham: Springer, 45-61, (2017).
  • [10] N. Guo, M.C. Leu, “Additive manufacturing: technology, applications and research needs”, Frontiers of mechanical engineering, 8(3): 215-243, (2013).
  • [11] K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, J. Eckert, “Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment”, Materials Science and Engineering: A, 590, 153-160, (2014).
  • [12] F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties”, Materials, 10(1): 76. (2017).
  • [13] E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior”, Materials & Design, 34, 159-169, (2012).
  • [14] E. Louvis, P. Fox, C. J. Sutcliffe, “Selective laser melting of aluminium components”, Journal of Materials Processing Technology, 211(2): 275-284. (2011).
  • [15] W. E. Frazier, “Metal additive manufacturing: a review”, Journal of Materials Engineering and performance, 23(6): 1917-1928, (2014).
  • [16] H. Kahramanzade, Y. Sert, T. Küçükömeroğlu, “Sürtünme Karıştırma İşleminin Eklemeli İmalat Yöntemi ile Üretilen AlSi10Mg Alaşımının Tribolojik Özelliklerine Etkisi”, Avrupa Bilim ve Teknoloji Dergisi, (28), 1159-1166. (2021).
  • [17] W. D. Nix, H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, 46(3): 411-425, (1998).
  • [18] D. Buchbinder, W. Meiners, K. Wissenbach R. Popraw, “Selective laser melting of aluminum die-cast alloy correlations between process parameters, solidification conditions, and resulting mechanical properties”, Journal of Laser Applications, 27 (S2): (2015).
  • [19] S. Sun, M. Brandt, M. J. L. A. M. Easton, “Powder bed fusion processes: An overview”, Laser Additive Manufacturing, 55-77, 2017.
  • [20] E. U. Solakoğlu, “Lazerle Metal Toz Ergitme (SLM) Prosesi Sonrası Proses Parametrelerinin Yüzey Kalitesine Olan Etkisinin İncelenmesi”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 10, (2018).
  • [21] B. Duman, M. C. Kayacan, “Doğrudan metal lazer sinterleme/ergitme yöntemi ile imal edilecek parçanın mekanik özelliklerinin tahmini”, Teknik Bilimler Dergisi, 7(1): 12-28. (2017).
  • [22] J. P. Oliveira, A. D. LaLonde, J. Ma, “Processing parameters in laser powder bed fusion metal additive manufacturing”, Materials & Design, 193, 108762, (2020).
  • [23] N. Read, W. Wang, K. Essa, M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development”, Materials & Design (1980-2015), 65, 417-424, (2015).
  • [24] P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, “The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior”, Appl. Surf. Sci, 408, 38-50, (2017).
  • [25] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, F. Walther, “Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting”, J. Mater. Process. Technol, 221, 205-213, (2015).
  • [26] Ö. Bayraktar, G. Uzun, R. Çakiroğlu, A. Guldas, “Experimental study on the 3D‐printed plastic parts and predicting the mechanical properties using artificial neural networks”, Polymers for Advanced Technologies, 28(8): 1044-1051, (2017).
  • [27] Y. Liu, Y. Yang, S. Mai, D. Wang, C. Song, “Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder”, Materials & Design, 87, 797-806, (2015).
  • [28] A. A. Martin, N. P. Calta, S. A. Khairallah, J. Wang, P. J. Depond, A.Y. Fong, V. Thampy, G. M. Guss, A. M. Kiss, K. H. Stone, C. J. Tassone, J. Nelson Weker, M. F. Toney, T. Van Buuren, M. J. Matthews, “Dynamics of pore formation during laser powder bed fusion additive manufacturing”, Nature communications 10(1): 1-10, (2019).
  • [29] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J. H. Hattel, “Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation”, Addit. Manuf, 30, 100835, (2019).
  • [30] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, “Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting”, Materials & Design, 105, 160-170, (2016). [31] W. E. Frazier, “Metal additive manufacturing: a review”. Journal of Materials Engineering and performance, 23(6): 1917-1928, (2014).
  • [32] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, S. S. Babu, “The metallurgy and processing science of metal additive manufacturing”, International materials reviews, 61(5): 315-360. (2016).
  • [33] A. Triantaphyllou, C. L. Giusca, G. D. Macaulay, F. Roerig, M. Hoebel, R. K. Leach, K. A. Milne, “Surface texture measurement for additive manufacturing”, Surface topography: metrology and properties, 3(2): 024002, (2015).
  • [34] G. Strano, L. Hao, R. M. Everson, K. E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting”, Journal of Materials Processing Technology, 213(4): 589-597, (2013).
  • [35] N. N. Kumbhar, A. V. Mulay, “Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review”, Journal of The Institution of Engineers (India): Series C, 99(4): 481-487, (2018).
  • [36] L. Hackel, J. R. Rankin, A. Rubenchik, W. E. King, M. Matthews, “Laser peening: A tool for additive manufacturing post-processing”, Additive Manufacturing, 24, 67-75, (2018).
  • [37] S. Lee, Z. Ahmadi, J. W. Pegues, M. Mahjouri-Samani, N. Shamsaei, “Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts”, Optics & Laser Technology, 134, 106639, (2021).
  • [38] M. Kahlin, H. Ansell, D. Basu, A., Kerwin, L. Newton, B. Smith, J. J. Moverare, “Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing”, International Journal of Fatigue, 134, 105497, (2020). [39] E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, “Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities”, Additive Manufacturing, 37, 101619, (2021).
  • [40] A. Du Plessis, P. Sperling, A. Beerlink, O. Kruger, L. Tshabalala, S. Hoosain, S. G. Le Roux, “Standard method for microCT-based additive manufacturing quality control 3: surface roughness”, MethodsX, 5, 1111-1116, 2018.
  • [41] Q. Wang, Z. Zhang, X. Tong, S. Dong, Z. Cui, X. Wang, L. Ren, “Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting”, Optics & Laser Technology, 128, 106262, (2020).
  • [42] T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C. S. Kiminami, C. Bolfarini, S. Pauly, “Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting”, Additive Manufacturing, 11, 23-31, (2016).
  • [43] T. Kimura, T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting”, Mater. Des, 89,1294-1301, (2016).
  • [44] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, “Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes”, Additive Manufacturing, 1, 87-98, (2014).
  • [45] D. Gu, Y. Shen, “Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods”, Materials & Design, 30(8): 2903-2910, (2009).
  • [46] V. Gopan, K. L. D. Wins, A. Surendran, “Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review”, CIRP Journal of Manufacturing Science and Technology, 32, 228-248, (2021).
  • [47] Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, S. Zhang, “Experimental research on selective laser melting AlSi10Mg alloys: process, densification and performance”, Journal of Materials Engineering and Performance, 26(12): 5897-5905, (2017).
  • [48] Y. Bai, Y. Yang, D. Wang, M. Zhang, “Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting”, Materials Science and Engineering: A, 703, 116-123, (2017).
  • [49] A. Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Q. Bakhsh, D. Ali, “Effects of selective laser melting parameters on relative density of AlSi10Mg”, Int. J. Eng. Technol, 8(6): 2552-2557, (2016).
  • [50] H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, Y.Sohn, “Understanding the laser powder bed fusion of AlSi10Mg alloy”, Metallography, Microstructure, and Analysis, 9(4): 484-502, (2020).
  • [51] E. Cerri, E. Ghio, G. Bolelli, “Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10Mg Alloy Manufactured by Single-and Multi-Laser Selective Laser Melting”, Journal of Materials Engineering and Performance, 30(7): 4981-4992, (2021).
  • [52] S. Bai, N. Perevoshchikova, Y. Sha, X. Wu, “The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the archimedes method”, Applied Sciences, 9(3): 583, (2019).
  • [53] A. Majeed, Y. J. Lv, Zhang, T. Peng, Z. Atta, A. Ahmed, “Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM”, Computers & Industrial Engineering, 139, 106194, (2020).
  • [54] L. Girelli, M. Tocci, M. Gelfi, A. Pola, “Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy”, Materials Science and Engineering: A, 739, 317-328, (2019).
  • [55] T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, C. Zhang, K. Zhang, “Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties”, Journal of Alloys and Compounds, 849, 156300, (2020).
  • [56] K. Riener, S. Oswald, M. Winkler, G. J. Leichtfried, “Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF)”, Additive Manufacturing, 39, 101896, (2021).
  • [57] J. C. Hastie, M. E. Kartal, L. N. Carter, M. M. Attallah, D. M. Mulvihill, “Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment”, Materials Characterization, 163, 110225, (2020).
  • [58] L. P. Lam, D. Q. Zhang, Z. H. Liu, C. K. Chua, “Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting”, Virtual and Physical Prototyping, 10(4): 207-215 (2015).
  • [59] S. A. Jawade, R. S. Joshi, S. B. Desai, “Comparative study of mechanical properties of additively manufactured aluminum alloy”, Materials Today: Proceedings, 46, 9270-9274. (2021).
  • [60] K. Kempen, L. Thijs, J. Van Humbeeck, J. P. Kruth, “Mechanical properties of AlSi10Mg produced by selective laser melting”, Physics Procedia, 39, 439-446, (2012).
  • [61] S. Dong, X. Zhang, F. Ma, J. Jiang, W. Yang, Z. Lin, “Research on metallurgical bonding of selective laser melted AlSi10Mg alloy”, Materials Research Express, 7(2): 025801, (2020). [62] M. Liu, K. Wei, X. Yue, G. Huang, J. Deng, X. Zeng, “High power laser powder bed fusion of AlSi10Mg alloy: effect of laser beam mode”, Journal of Alloys and Compounds, 164779, (2022).
  • [63] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, “The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys”, Materials, 12(1): 12, (2018).
  • [64] H. Wu, Y. Ren, J. Ren, L. Liang, R. Li, Q. Fang, I. Baker, “Selective laser melted AlSi10Mg alloy under melting mode transition: Microstructure evolution, nanomechanical behaviors and tensile properties”, Journal of Alloys and Compounds, 873, 159823, (2021).
  • [65] M Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, “On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS”, Rapid Prototyping Journal, (2014).
  • [66] M. Giovagnoli, G. Silvi, M. Merlin, M. T. Di Giovanni, “Optimisation of process parameters for an additively manufactured AlSi10Mg alloy: Limitations of the energy density-based approach on porosity and mechanical properties estimation”, Materials Science and Engineering: A, 802, 140613 (2021).
  • [67] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. M. Everitt, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment”, Materials Science and Engineering: A, 667, 139-146, (2016).
  • [68] W. Li, , S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism”, Materials Science and Engineering: A, (663) 116-125, (2016).
  • [69] A. A. Raus, M. S. Wahab, M. Ibrahim, K. Kamarudin, A. Ahmed, S. Shamsudin, “Mechanical and physical properties of AlSi10Mg processed through selective laser melting”, In AIP Conference Proceedings, 1831(1), 020027, (2017).
  • [70] R. Casati, M. Hamidi Nasab, M. Coduri, V. Tirelli, M. Vedani, “Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting”, Metals, 8(11): 954, (2018).
  • [71] B. J. Mfusi, L. C. Tshabalala, A. P. I. Popoola, N. R. Mathe, “The effect of selective laser melting build orientation on the mechanical properties of AlSi10Mg parts”, In IOP Conference Series: Materials Science and Engineering, 430(1): 012028, (2018).
  • [72] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. J. P. P. Bültmann, “High power selective laser melting (HP SLM) of aluminum parts”, Physics Procedia, 12, 271-278, (2011).
  • [73] P. Wei, Z.Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, “The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior”, Applied surface science, 408, 38-50, (2017).
  • [74] R. K. Shah, P. P. Dey, “Process parameter optimization of DMLS process to produce AlSi10Mg components, In Journal of Physics: Conference Series , 1240(1): 012011, (2019).
  • [75] K. Kempen, L.Thijs, J. Van Humbeeck, J. P. Kruth, Processing “AlSi10Mg by selective laser melting: parameter optimisation and material characterisation”, Materials Science and Technology, 31(8): 917-923, (2015).
  • [76] T. H. Park, M. S. Baek, H. Hyer, Y. Sohn, K. A. Lee, “Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process”, Materials Characterization, 176, 111113, (2021). [77] P. Wang, H. Lei, X. Zhu, H. Chen, D. Fang, “Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting”, Journal of Alloys and Compounds, 789, 852-859, (2019).
  • [78] B. Chen, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, “Strength and strain hardening of a selective laser melted AlSi10Mg alloy”, Scripta Materialia, 141, 45-49, (2017).
  • [79] K. Gokuldoss Prashanth, S. Scudino, J. Eckert, “Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures”, Technologies, 4(4): 38, (2016).
  • [80] J. Sun, L. Qiu, F. Wang, Y. Yang, L. Guo, “A new modification effect of eutectic Si in selective laser melted AlSi10Mg”, Materials Science and Technology, 35(6): 709-715, (2019).
  • [81] A. Simchi, “The role of particle size on the laser sintering of iron powder”, Metallurgical and Materials Transactions B, 35(5): 937-948, (2004).
  • [82] K. Mumtaz, N. Hopkinson, “Top surface and side roughness of Inconel 625 parts processed using selective laser melting”, Rapid Prototyping Journal, (2009).
  • [83] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, “Selective laser melting of iron-based powder” Journal of materials processing technology, 149(1-3): 616-622, (2004).
  • [84] C. Brecher, S. Jeschke, G. Schuh, S. Aghassi, J. Arnoscht, F. Bauhoff, F. Welter, “Integrative production technology for high-wage countries”, In Integrative production technology for high-wage countries, 17-76, (2012).
  • [85] F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, P. Fino, “Influence of process parameters on surface roughness of aluminum parts produced by DMLS”, The International Journal of Advanced Manufacturing Technology, 67(9): 2743-2751, (2013).
  • [86] R. Sharma, S. Kumar, R. Saha, “Investigation of Laser Sintered AlSi10Mg Specimens for Density and Surface Roughness”, In IOP Conference Series: Materials Science and Engineering, 804(1): 012024, (2020).
  • [87] L. Z. Wang, S. Wang, J. J. Wu, “Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting”, Optics & Laser Technology, 96, 88-96, (2017).
  • [88] L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, “Position dependent surface quality in selective laser melting: Positionsabhängige Oberflächenqualität im selektiven Laserstrahlschmelzen”, Materialwissenschaft und Werkstofftechnik, 48(5): 327-334, (2017).
  • [89] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, “Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy”, Materials, 11(12): 2343, (2018).
  • [90] Z. Ç. Öter, Direkt metal lazer sinterleme (DMLS) yöntemi ile 3 boyutlu metal yazıcıda üretilen parçaların yüzey kalitesi, boyutsal hassasiyet ve mekanik özelliklerinin geliştirilmesi, Doktora Tezi, Gebze Teknik Üniversitesi Fen Bilimleri Enstitüsü, Gebze, Türkiye, 2021.
  • [91] A. Majeed, A. Ahmed, A. Salam M. Z. Sheikh, “Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing”, International Journal of Lightweight Materials and Manufacture, 2(4): 288-295, (2019).

Seçici Lazer Ergitme (SLM) Yöntemi ile Üretilen AlSi10Mg Alaşımlı Parçalarda Kusurlar, Mekanik Özellikler ve Yüzey Pürüzlülüğü-Bir Araştırma

Year 2022, , 368 - 390, 30.06.2022
https://doi.org/10.29109/gujsc.1130098

Abstract

Metal esaslı eklemeli imalat, bir enerji kaynağı ile metalik tozun veya telin katman katman eritilmesi yoluyla üç boyutlu (3B) nesnelerin imal edildiği modern bir üretim sürecidir. Seçici lazer eritme (SLM) yöntemi, karmaşık ve hafif yapıların üretimine olanak sağladığından hem bilimsel hem de endüstriyel alanlarda kullanılmaktadır. AlSi10Mg alaşımı havacılık, otomotiv, denizcilik ve medikal endüstrilerin yanı sıra, özel tasarımlara ihtiyaç duyulan çeşitli uygulamalarda yaygın olarak kullanılmakta ve SLM araştırmalarında öne çıkan malzemelerden biri durumundadır. SLM yöntemi ile üretilen bir ürünün kalitesi, ergitme için gerekli olan enerji yoğunluğunu etkileyen imalat parametrelerinin (lazer gücü, tarama hızı, tarama mesafesi, katman kalınlığı) optimizasyonunu gerektirmektedir. Uygun olmayan imalat parametrelerinin kullanılması ile süreç gereği deformasyon mekanizmalarından kaynaklanan iç gerilmeler oluşmakta ve parça üzerinde çarpılma, çatlama ve boyutsal değişim meydana gelmektedir. Toz malzeme özellikleri, toz tabakasının düzgün olmayan dağıtımı, imalat sırasında deformasyon, lazer ışınındaki değişiklikler gibi değişkenler metalurjik gözeneklere neden olabilmektedir. İmalat sürecinde oluşan her türlü kusur nihai parçanın mekanik özellikleri ve yüzey kalitesi üzerinde olumsuz etkiye sahiptir. Bu çalışmada seçici lazer ergitme yöntemi ile AlSi10Mg alaşımından yüksek yoğunlukta, yüksek mukavemet özelliklerinde ve yüksek yüzey kalitesinde parçalar üretmek için literatürde yapılan çalışmalar araştırılarak elde edilen sonuçlar sunulmuştur. Araştırma sonucunda, enerji yoğunluğunun ürün kalitesi üzerinde daha belirleyici olduğu tespit edilmiştir. Ürünlerde en az gözeneklilik için ideal enerji yoğunluğunun 50-75 J/mm3 aralığında olduğu, eklemeli imalat ile üretilen AlSi10Mg alaşımlı parçaların döküm yöntemi ile üretilenlere kıyasla daha iyi mukavemet özelliği gösterdiği belirlenmiştir.

References

  • [1] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar, Kaçar, R. “PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu”, Politeknik Dergisi, 23(1): 73-79, (2020).
  • [2] C. Kiraz, H. K. Sezer, İ. Şahin, “Kuyumculuk sektöründe 3B baskı tasarım tekniklerinin özgürlüğünden faydalanıldığında sektöre getirileri”, International Journal of 3D Printing Technologies and Digital Industry, 2(2): 46-58, (2018).
  • [3] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting”, Additive manufacturing, 1, 77-86, (2014).
  • [4] N. Hutasoit, R. A. Rashid, S. Palanisamy, A. Duguid, “Effect of build orientation and post-build heat treatment on the mechanical properties of cold spray additively manufactured copper parts”, The International Journal of Advanced Manufacturing Technology, 110(9): 2341-2357, (2020).
  • [5] M. Günay, İ. Yeşildağ, “Mechanical Properties of Low Carbon Steel Produced by GMAW-based Additive Manufacturing”, Gazi Mühendislik Bilimleri Dergisi, 7(3): 175-182, (2021).
  • [6] H. Dedeakayoğulları, A. Kaçal, “Eklemeli İmalat Teknolojileri ve Kullanılan Talaşlı İmalat Yöntemleri Üzerine Yapılan Çalışmaların Değerlendirilmesi”, İmalat Teknolojileri ve Uygulamaları, 1(1): 1-12, (2020).
  • [7] http://my3dconcepts.com/explore/how-3d- printing-works, 20.01.2022.
  • [8] A. N. Jinoop, S. K. Subbu, R. A. Kumar, “Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718”, International Journal of Additive and Subtractive Materials Manufacturing, 2(1): 1-12, (2018).
  • [9] L.Yang, “Additive manufacturing of metals: the technology, materials, design and production”, Cham: Springer, 45-61, (2017).
  • [10] N. Guo, M.C. Leu, “Additive manufacturing: technology, applications and research needs”, Frontiers of mechanical engineering, 8(3): 215-243, (2013).
  • [11] K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, J. Eckert, “Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment”, Materials Science and Engineering: A, 590, 153-160, (2014).
  • [12] F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties”, Materials, 10(1): 76. (2017).
  • [13] E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior”, Materials & Design, 34, 159-169, (2012).
  • [14] E. Louvis, P. Fox, C. J. Sutcliffe, “Selective laser melting of aluminium components”, Journal of Materials Processing Technology, 211(2): 275-284. (2011).
  • [15] W. E. Frazier, “Metal additive manufacturing: a review”, Journal of Materials Engineering and performance, 23(6): 1917-1928, (2014).
  • [16] H. Kahramanzade, Y. Sert, T. Küçükömeroğlu, “Sürtünme Karıştırma İşleminin Eklemeli İmalat Yöntemi ile Üretilen AlSi10Mg Alaşımının Tribolojik Özelliklerine Etkisi”, Avrupa Bilim ve Teknoloji Dergisi, (28), 1159-1166. (2021).
  • [17] W. D. Nix, H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, 46(3): 411-425, (1998).
  • [18] D. Buchbinder, W. Meiners, K. Wissenbach R. Popraw, “Selective laser melting of aluminum die-cast alloy correlations between process parameters, solidification conditions, and resulting mechanical properties”, Journal of Laser Applications, 27 (S2): (2015).
  • [19] S. Sun, M. Brandt, M. J. L. A. M. Easton, “Powder bed fusion processes: An overview”, Laser Additive Manufacturing, 55-77, 2017.
  • [20] E. U. Solakoğlu, “Lazerle Metal Toz Ergitme (SLM) Prosesi Sonrası Proses Parametrelerinin Yüzey Kalitesine Olan Etkisinin İncelenmesi”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, 10, (2018).
  • [21] B. Duman, M. C. Kayacan, “Doğrudan metal lazer sinterleme/ergitme yöntemi ile imal edilecek parçanın mekanik özelliklerinin tahmini”, Teknik Bilimler Dergisi, 7(1): 12-28. (2017).
  • [22] J. P. Oliveira, A. D. LaLonde, J. Ma, “Processing parameters in laser powder bed fusion metal additive manufacturing”, Materials & Design, 193, 108762, (2020).
  • [23] N. Read, W. Wang, K. Essa, M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development”, Materials & Design (1980-2015), 65, 417-424, (2015).
  • [24] P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, “The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior”, Appl. Surf. Sci, 408, 38-50, (2017).
  • [25] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, F. Walther, “Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting”, J. Mater. Process. Technol, 221, 205-213, (2015).
  • [26] Ö. Bayraktar, G. Uzun, R. Çakiroğlu, A. Guldas, “Experimental study on the 3D‐printed plastic parts and predicting the mechanical properties using artificial neural networks”, Polymers for Advanced Technologies, 28(8): 1044-1051, (2017).
  • [27] Y. Liu, Y. Yang, S. Mai, D. Wang, C. Song, “Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder”, Materials & Design, 87, 797-806, (2015).
  • [28] A. A. Martin, N. P. Calta, S. A. Khairallah, J. Wang, P. J. Depond, A.Y. Fong, V. Thampy, G. M. Guss, A. M. Kiss, K. H. Stone, C. J. Tassone, J. Nelson Weker, M. F. Toney, T. Van Buuren, M. J. Matthews, “Dynamics of pore formation during laser powder bed fusion additive manufacturing”, Nature communications 10(1): 1-10, (2019).
  • [29] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J. H. Hattel, “Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation”, Addit. Manuf, 30, 100835, (2019).
  • [30] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, “Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting”, Materials & Design, 105, 160-170, (2016). [31] W. E. Frazier, “Metal additive manufacturing: a review”. Journal of Materials Engineering and performance, 23(6): 1917-1928, (2014).
  • [32] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, S. S. Babu, “The metallurgy and processing science of metal additive manufacturing”, International materials reviews, 61(5): 315-360. (2016).
  • [33] A. Triantaphyllou, C. L. Giusca, G. D. Macaulay, F. Roerig, M. Hoebel, R. K. Leach, K. A. Milne, “Surface texture measurement for additive manufacturing”, Surface topography: metrology and properties, 3(2): 024002, (2015).
  • [34] G. Strano, L. Hao, R. M. Everson, K. E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting”, Journal of Materials Processing Technology, 213(4): 589-597, (2013).
  • [35] N. N. Kumbhar, A. V. Mulay, “Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review”, Journal of The Institution of Engineers (India): Series C, 99(4): 481-487, (2018).
  • [36] L. Hackel, J. R. Rankin, A. Rubenchik, W. E. King, M. Matthews, “Laser peening: A tool for additive manufacturing post-processing”, Additive Manufacturing, 24, 67-75, (2018).
  • [37] S. Lee, Z. Ahmadi, J. W. Pegues, M. Mahjouri-Samani, N. Shamsaei, “Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts”, Optics & Laser Technology, 134, 106639, (2021).
  • [38] M. Kahlin, H. Ansell, D. Basu, A., Kerwin, L. Newton, B. Smith, J. J. Moverare, “Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing”, International Journal of Fatigue, 134, 105497, (2020). [39] E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, “Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities”, Additive Manufacturing, 37, 101619, (2021).
  • [40] A. Du Plessis, P. Sperling, A. Beerlink, O. Kruger, L. Tshabalala, S. Hoosain, S. G. Le Roux, “Standard method for microCT-based additive manufacturing quality control 3: surface roughness”, MethodsX, 5, 1111-1116, 2018.
  • [41] Q. Wang, Z. Zhang, X. Tong, S. Dong, Z. Cui, X. Wang, L. Ren, “Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting”, Optics & Laser Technology, 128, 106262, (2020).
  • [42] T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C. S. Kiminami, C. Bolfarini, S. Pauly, “Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting”, Additive Manufacturing, 11, 23-31, (2016).
  • [43] T. Kimura, T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting”, Mater. Des, 89,1294-1301, (2016).
  • [44] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, “Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes”, Additive Manufacturing, 1, 87-98, (2014).
  • [45] D. Gu, Y. Shen, “Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods”, Materials & Design, 30(8): 2903-2910, (2009).
  • [46] V. Gopan, K. L. D. Wins, A. Surendran, “Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review”, CIRP Journal of Manufacturing Science and Technology, 32, 228-248, (2021).
  • [47] Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, S. Zhang, “Experimental research on selective laser melting AlSi10Mg alloys: process, densification and performance”, Journal of Materials Engineering and Performance, 26(12): 5897-5905, (2017).
  • [48] Y. Bai, Y. Yang, D. Wang, M. Zhang, “Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting”, Materials Science and Engineering: A, 703, 116-123, (2017).
  • [49] A. Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Q. Bakhsh, D. Ali, “Effects of selective laser melting parameters on relative density of AlSi10Mg”, Int. J. Eng. Technol, 8(6): 2552-2557, (2016).
  • [50] H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, Y.Sohn, “Understanding the laser powder bed fusion of AlSi10Mg alloy”, Metallography, Microstructure, and Analysis, 9(4): 484-502, (2020).
  • [51] E. Cerri, E. Ghio, G. Bolelli, “Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10Mg Alloy Manufactured by Single-and Multi-Laser Selective Laser Melting”, Journal of Materials Engineering and Performance, 30(7): 4981-4992, (2021).
  • [52] S. Bai, N. Perevoshchikova, Y. Sha, X. Wu, “The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the archimedes method”, Applied Sciences, 9(3): 583, (2019).
  • [53] A. Majeed, Y. J. Lv, Zhang, T. Peng, Z. Atta, A. Ahmed, “Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM”, Computers & Industrial Engineering, 139, 106194, (2020).
  • [54] L. Girelli, M. Tocci, M. Gelfi, A. Pola, “Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy”, Materials Science and Engineering: A, 739, 317-328, (2019).
  • [55] T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, C. Zhang, K. Zhang, “Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties”, Journal of Alloys and Compounds, 849, 156300, (2020).
  • [56] K. Riener, S. Oswald, M. Winkler, G. J. Leichtfried, “Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF)”, Additive Manufacturing, 39, 101896, (2021).
  • [57] J. C. Hastie, M. E. Kartal, L. N. Carter, M. M. Attallah, D. M. Mulvihill, “Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment”, Materials Characterization, 163, 110225, (2020).
  • [58] L. P. Lam, D. Q. Zhang, Z. H. Liu, C. K. Chua, “Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting”, Virtual and Physical Prototyping, 10(4): 207-215 (2015).
  • [59] S. A. Jawade, R. S. Joshi, S. B. Desai, “Comparative study of mechanical properties of additively manufactured aluminum alloy”, Materials Today: Proceedings, 46, 9270-9274. (2021).
  • [60] K. Kempen, L. Thijs, J. Van Humbeeck, J. P. Kruth, “Mechanical properties of AlSi10Mg produced by selective laser melting”, Physics Procedia, 39, 439-446, (2012).
  • [61] S. Dong, X. Zhang, F. Ma, J. Jiang, W. Yang, Z. Lin, “Research on metallurgical bonding of selective laser melted AlSi10Mg alloy”, Materials Research Express, 7(2): 025801, (2020). [62] M. Liu, K. Wei, X. Yue, G. Huang, J. Deng, X. Zeng, “High power laser powder bed fusion of AlSi10Mg alloy: effect of laser beam mode”, Journal of Alloys and Compounds, 164779, (2022).
  • [63] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, “The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys”, Materials, 12(1): 12, (2018).
  • [64] H. Wu, Y. Ren, J. Ren, L. Liang, R. Li, Q. Fang, I. Baker, “Selective laser melted AlSi10Mg alloy under melting mode transition: Microstructure evolution, nanomechanical behaviors and tensile properties”, Journal of Alloys and Compounds, 873, 159823, (2021).
  • [65] M Krishnan, E. Atzeni, R. Canali, F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, “On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS”, Rapid Prototyping Journal, (2014).
  • [66] M. Giovagnoli, G. Silvi, M. Merlin, M. T. Di Giovanni, “Optimisation of process parameters for an additively manufactured AlSi10Mg alloy: Limitations of the energy density-based approach on porosity and mechanical properties estimation”, Materials Science and Engineering: A, 802, 140613 (2021).
  • [67] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. M. Everitt, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment”, Materials Science and Engineering: A, 667, 139-146, (2016).
  • [68] W. Li, , S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism”, Materials Science and Engineering: A, (663) 116-125, (2016).
  • [69] A. A. Raus, M. S. Wahab, M. Ibrahim, K. Kamarudin, A. Ahmed, S. Shamsudin, “Mechanical and physical properties of AlSi10Mg processed through selective laser melting”, In AIP Conference Proceedings, 1831(1), 020027, (2017).
  • [70] R. Casati, M. Hamidi Nasab, M. Coduri, V. Tirelli, M. Vedani, “Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting”, Metals, 8(11): 954, (2018).
  • [71] B. J. Mfusi, L. C. Tshabalala, A. P. I. Popoola, N. R. Mathe, “The effect of selective laser melting build orientation on the mechanical properties of AlSi10Mg parts”, In IOP Conference Series: Materials Science and Engineering, 430(1): 012028, (2018).
  • [72] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. J. P. P. Bültmann, “High power selective laser melting (HP SLM) of aluminum parts”, Physics Procedia, 12, 271-278, (2011).
  • [73] P. Wei, Z.Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, “The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior”, Applied surface science, 408, 38-50, (2017).
  • [74] R. K. Shah, P. P. Dey, “Process parameter optimization of DMLS process to produce AlSi10Mg components, In Journal of Physics: Conference Series , 1240(1): 012011, (2019).
  • [75] K. Kempen, L.Thijs, J. Van Humbeeck, J. P. Kruth, Processing “AlSi10Mg by selective laser melting: parameter optimisation and material characterisation”, Materials Science and Technology, 31(8): 917-923, (2015).
  • [76] T. H. Park, M. S. Baek, H. Hyer, Y. Sohn, K. A. Lee, “Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process”, Materials Characterization, 176, 111113, (2021). [77] P. Wang, H. Lei, X. Zhu, H. Chen, D. Fang, “Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting”, Journal of Alloys and Compounds, 789, 852-859, (2019).
  • [78] B. Chen, S. K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, “Strength and strain hardening of a selective laser melted AlSi10Mg alloy”, Scripta Materialia, 141, 45-49, (2017).
  • [79] K. Gokuldoss Prashanth, S. Scudino, J. Eckert, “Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures”, Technologies, 4(4): 38, (2016).
  • [80] J. Sun, L. Qiu, F. Wang, Y. Yang, L. Guo, “A new modification effect of eutectic Si in selective laser melted AlSi10Mg”, Materials Science and Technology, 35(6): 709-715, (2019).
  • [81] A. Simchi, “The role of particle size on the laser sintering of iron powder”, Metallurgical and Materials Transactions B, 35(5): 937-948, (2004).
  • [82] K. Mumtaz, N. Hopkinson, “Top surface and side roughness of Inconel 625 parts processed using selective laser melting”, Rapid Prototyping Journal, (2009).
  • [83] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, “Selective laser melting of iron-based powder” Journal of materials processing technology, 149(1-3): 616-622, (2004).
  • [84] C. Brecher, S. Jeschke, G. Schuh, S. Aghassi, J. Arnoscht, F. Bauhoff, F. Welter, “Integrative production technology for high-wage countries”, In Integrative production technology for high-wage countries, 17-76, (2012).
  • [85] F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, P. Fino, “Influence of process parameters on surface roughness of aluminum parts produced by DMLS”, The International Journal of Advanced Manufacturing Technology, 67(9): 2743-2751, (2013).
  • [86] R. Sharma, S. Kumar, R. Saha, “Investigation of Laser Sintered AlSi10Mg Specimens for Density and Surface Roughness”, In IOP Conference Series: Materials Science and Engineering, 804(1): 012024, (2020).
  • [87] L. Z. Wang, S. Wang, J. J. Wu, “Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting”, Optics & Laser Technology, 96, 88-96, (2017).
  • [88] L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, “Position dependent surface quality in selective laser melting: Positionsabhängige Oberflächenqualität im selektiven Laserstrahlschmelzen”, Materialwissenschaft und Werkstofftechnik, 48(5): 327-334, (2017).
  • [89] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, “Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy”, Materials, 11(12): 2343, (2018).
  • [90] Z. Ç. Öter, Direkt metal lazer sinterleme (DMLS) yöntemi ile 3 boyutlu metal yazıcıda üretilen parçaların yüzey kalitesi, boyutsal hassasiyet ve mekanik özelliklerinin geliştirilmesi, Doktora Tezi, Gebze Teknik Üniversitesi Fen Bilimleri Enstitüsü, Gebze, Türkiye, 2021.
  • [91] A. Majeed, A. Ahmed, A. Salam M. Z. Sheikh, “Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing”, International Journal of Lightweight Materials and Manufacture, 2(4): 288-295, (2019).
There are 87 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Yusuf Siyambaş 0000-0001-8360-5213

Yakup Turgut 0000-0002-4753-7038

Publication Date June 30, 2022
Submission Date June 13, 2022
Published in Issue Year 2022

Cite

APA Siyambaş, Y., & Turgut, Y. (2022). Seçici Lazer Ergitme (SLM) Yöntemi ile Üretilen AlSi10Mg Alaşımlı Parçalarda Kusurlar, Mekanik Özellikler ve Yüzey Pürüzlülüğü-Bir Araştırma. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(2), 368-390. https://doi.org/10.29109/gujsc.1130098

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526