Research Article
BibTex RIS Cite
Year 2022, , 682 - 690, 30.12.2022
https://doi.org/10.29109/gujsc.1172357

Abstract

References

  • [1] Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
  • [2] Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015, January 1). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry. Springer India. https://doi.org/10.1007/s12291-014-0446-0
  • [3] Wu, J. (2020, September 1). Tackle the free radicals damage in COVID-19. Nitric Oxide - Biology and Chemistry. Academic Press Inc. https://doi.org/10.1016/j.niox.2020.06.002
  • [4] Kopáni, M., Celec, P., Danišovič, L., Michalka, P., & Biró, C. (2006, February). Oxidative stress and electron spin resonance. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2005.05.016
  • [5] Halliwell, B., & Aruoma, O. I. (1991, April 9). DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Letters. https://doi.org/10.1016/0014-5793(91)80347-6
  • [6] Gong, Y., Huang, X. Y., Pei, D., Duan, W. D., Zhang, X., Sun, X., & Di, D. L. (2020). The applicability of high-speed counter current chromatography to the separation of natural antioxidants. Journal of Chromatography A, 1623. https://doi.org/10.1016/j.chroma.2020.461150
  • [7] Romera-Castillo, C., & Jaffé, R. (2015). Free radical scavenging (antioxidant activity) of natural dissolved organic matter. Marine Chemistry, 177, 668–676. https://doi.org/10.1016/j.marchem.2015.10.008
  • [8] Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science. Elsevier Ltd. https://doi.org/10.1016/S1360-1385(97)01018-2
  • [9] Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535–543. https://doi.org/10.1006/abbi.1993.1074
  • [10] Cárdenas, A., Gómez, M., & Frontana, C. (2014). Development of an electrochemical cupric reducing antioxidant capacity method (CUPRAC) for antioxidant analysis. Electrochimica Acta, 128, 113–118. https://doi.org/10.1016/j.electacta.2013.10.191
  • [11] Zhao, W., Xiang, Y., Xu, J., He, X., & Zhao, P. (2020). The reversible surface redox of polymer dots for the assay of total antioxidant capacity in food samples. Microchemical Journal, 156. https://doi.org/10.1016/j.microc.2020.104805
  • [12] Cao, G., Sofic, E., & Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine, 22(5), 749–760. https://doi.org/10.1016/S0891-5849(96)00351-6
  • [13] Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
  • [14] Özyürek, M., Bektaşoĝlu, B., Güçlü, K., Güngör, N., & Apak, R. (2010). A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology. Journal of Food Composition and Analysis, 23(7), 689–698. https://doi.org/10.1016/j.jfca.2010.02.013
  • [15] Karadirek, Ş., Kanmaz, N., Balta, Z., Demirçivi, P., Üzer, A., Hizal, J., & Apak, R. (2016). Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods. Talanta, 153, 120–129. https://doi.org/10.1016/j.talanta.2016.03.006
  • [16] Prenesti, E., Berto, S., Gosmaro, F., Fisicaro, P., Bagnati, M., & Bellomo, G. (2020). Measurement uncertainty evaluation of the Total Antioxidant Capacity of human plasma tested by the CUPRAC-BCS method. Measurement: Journal of the International Measurement Confederation, 152. https://doi.org/10.1016/j.measurement.2019.107289
  • [17] Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçǧ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304. https://doi.org/10.1080/09637480600798132
  • [18] Apak, R., Güçlü, K., Özyürek, M., Esi̊n Karademi̊r, S., & Altun, M. (2005). Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radical Research, 39(9), 949–961. https://doi.org/10.1080/10715760500210145
  • [19] Krylova, E., Gavrilenko, N., Saranchina, N., & Gavrilenko, M. (2016). Novel Colorimetric Sensor for Cupric Reducing Antioxidant Capacity (CUPRAC) Measurement. In Procedia Engineering (Vol. 168, pp. 355–358). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2016.11.120
  • [20] Güçlü, K., Altun, M., Özyürek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41(SUPPL. 1), 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • [21] Catelani, T. A., Bittar, D. B., Pezza, L., & Pezza, H. R. (2019). Determination of amino acids in gym supplements using digital images and paper platform coupled to diffuse reflectance spectroscopy and USB device. Talanta, 196, 523–529. https://doi.org/10.1016/j.talanta.2018.12.052
  • [22] Zamora-Garcia, I., Correa-Tome, F. E., Hernandez-Belmonte, U. H., Ayala-Ramirez, V., & Ramirez-Paredes, J. P. (2021). Mobile digital colorimetry for the determination of ammonia in aquaculture applications. Computers and Electronics in Agriculture, 181. https://doi.org/10.1016/j.compag.2020.105960
  • [23] Borahan, T., Girgin, A., Atsever, N., Zaman, B. T., Chormey, D. S., & Bakırdere, S. (2022). Development of a double-monitoring method for the determination of total antioxidant capacity as ascorbic acid equivalent using CUPRAC assay with RP-HPLC and digital image-based colorimetric detection. European Food Research and Technology, 248(3), 707–713. https://doi.org/10.1007/s00217-021-03923-7
  • [24] Lin, B., Yu, Y., Cao, Y., Guo, M., Zhu, D., Dai, J., & Zheng, M. (2018). Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosensors and Bioelectronics, 100, 482–489. https://doi.org/10.1016/j.bios.2017.09.028
  • [25] Masawat, P., Harfield, A., & Namwong, A. (2015). An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chemistry, 184, 23–29. https://doi.org/10.1016/j.foodchem.2015.03.089
  • [26] Silva, A. F. S., & Rocha, F. R. P. (2020). A novel approach to detect milk adulteration based on the determination of protein content by smartphone-based digital image colorimetry. Food Control, 115. https://doi.org/10.1016/j.foodcont.2020.107299

Determination of Total Antioxidant Capacities as Ascorbic Acid Equivalent of Tea Extract Samples from Different Brands Using Digital Image-Based Colorimetric Detection Method

Year 2022, , 682 - 690, 30.12.2022
https://doi.org/10.29109/gujsc.1172357

Abstract

In this study, the Digital Image-Based Colorimetric Detection Method developed by Bakırdere et al. was used to find the TAC (Total Antioxidant Capacity) value of tea samples from different brands. To determine the total amount of antioxidants in tea samples, the CUPRAC (cupric ion reducing antioxidant capacity) method, which is widely used in antioxidant determination, was combined with a digital image-based colorimetric detection system. To use in our study, a box with opaque wood material measuring 24 cm x 19 cm x 17 cm (width/length/depth) was designed and manufactured. In the analysis, the oxidation reaction between the chromogenic copper(II)-neocuproine (Cu(II)-Nc) reagent and antioxidants was utilized. The color change that occurs as a result of the oxidation was calculated using an application on smartphones. In our study, analyzes were performed on 4 different brand tea extract samples (tea A, tea B, tea C, tea D) to determine the total antioxidant capacity of ascorbic acid equivalent. The TAC values for ascorbic acid equivalent in tea extract samples were found as 380 ± 8 mg/L (tea A), 402 ± 4 mg/L (tea B), 213 ± 3 mg/L (tea C), 232 ± 4 mg/L (tea D) using the digital image-based colorimetric detection systems.

References

  • [1] Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
  • [2] Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015, January 1). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry. Springer India. https://doi.org/10.1007/s12291-014-0446-0
  • [3] Wu, J. (2020, September 1). Tackle the free radicals damage in COVID-19. Nitric Oxide - Biology and Chemistry. Academic Press Inc. https://doi.org/10.1016/j.niox.2020.06.002
  • [4] Kopáni, M., Celec, P., Danišovič, L., Michalka, P., & Biró, C. (2006, February). Oxidative stress and electron spin resonance. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2005.05.016
  • [5] Halliwell, B., & Aruoma, O. I. (1991, April 9). DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Letters. https://doi.org/10.1016/0014-5793(91)80347-6
  • [6] Gong, Y., Huang, X. Y., Pei, D., Duan, W. D., Zhang, X., Sun, X., & Di, D. L. (2020). The applicability of high-speed counter current chromatography to the separation of natural antioxidants. Journal of Chromatography A, 1623. https://doi.org/10.1016/j.chroma.2020.461150
  • [7] Romera-Castillo, C., & Jaffé, R. (2015). Free radical scavenging (antioxidant activity) of natural dissolved organic matter. Marine Chemistry, 177, 668–676. https://doi.org/10.1016/j.marchem.2015.10.008
  • [8] Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science. Elsevier Ltd. https://doi.org/10.1016/S1360-1385(97)01018-2
  • [9] Buettner, G. R. (1993). The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535–543. https://doi.org/10.1006/abbi.1993.1074
  • [10] Cárdenas, A., Gómez, M., & Frontana, C. (2014). Development of an electrochemical cupric reducing antioxidant capacity method (CUPRAC) for antioxidant analysis. Electrochimica Acta, 128, 113–118. https://doi.org/10.1016/j.electacta.2013.10.191
  • [11] Zhao, W., Xiang, Y., Xu, J., He, X., & Zhao, P. (2020). The reversible surface redox of polymer dots for the assay of total antioxidant capacity in food samples. Microchemical Journal, 156. https://doi.org/10.1016/j.microc.2020.104805
  • [12] Cao, G., Sofic, E., & Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine, 22(5), 749–760. https://doi.org/10.1016/S0891-5849(96)00351-6
  • [13] Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
  • [14] Özyürek, M., Bektaşoĝlu, B., Güçlü, K., Güngör, N., & Apak, R. (2010). A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology. Journal of Food Composition and Analysis, 23(7), 689–698. https://doi.org/10.1016/j.jfca.2010.02.013
  • [15] Karadirek, Ş., Kanmaz, N., Balta, Z., Demirçivi, P., Üzer, A., Hizal, J., & Apak, R. (2016). Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods. Talanta, 153, 120–129. https://doi.org/10.1016/j.talanta.2016.03.006
  • [16] Prenesti, E., Berto, S., Gosmaro, F., Fisicaro, P., Bagnati, M., & Bellomo, G. (2020). Measurement uncertainty evaluation of the Total Antioxidant Capacity of human plasma tested by the CUPRAC-BCS method. Measurement: Journal of the International Measurement Confederation, 152. https://doi.org/10.1016/j.measurement.2019.107289
  • [17] Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçǧ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304. https://doi.org/10.1080/09637480600798132
  • [18] Apak, R., Güçlü, K., Özyürek, M., Esi̊n Karademi̊r, S., & Altun, M. (2005). Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radical Research, 39(9), 949–961. https://doi.org/10.1080/10715760500210145
  • [19] Krylova, E., Gavrilenko, N., Saranchina, N., & Gavrilenko, M. (2016). Novel Colorimetric Sensor for Cupric Reducing Antioxidant Capacity (CUPRAC) Measurement. In Procedia Engineering (Vol. 168, pp. 355–358). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2016.11.120
  • [20] Güçlü, K., Altun, M., Özyürek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41(SUPPL. 1), 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • [21] Catelani, T. A., Bittar, D. B., Pezza, L., & Pezza, H. R. (2019). Determination of amino acids in gym supplements using digital images and paper platform coupled to diffuse reflectance spectroscopy and USB device. Talanta, 196, 523–529. https://doi.org/10.1016/j.talanta.2018.12.052
  • [22] Zamora-Garcia, I., Correa-Tome, F. E., Hernandez-Belmonte, U. H., Ayala-Ramirez, V., & Ramirez-Paredes, J. P. (2021). Mobile digital colorimetry for the determination of ammonia in aquaculture applications. Computers and Electronics in Agriculture, 181. https://doi.org/10.1016/j.compag.2020.105960
  • [23] Borahan, T., Girgin, A., Atsever, N., Zaman, B. T., Chormey, D. S., & Bakırdere, S. (2022). Development of a double-monitoring method for the determination of total antioxidant capacity as ascorbic acid equivalent using CUPRAC assay with RP-HPLC and digital image-based colorimetric detection. European Food Research and Technology, 248(3), 707–713. https://doi.org/10.1007/s00217-021-03923-7
  • [24] Lin, B., Yu, Y., Cao, Y., Guo, M., Zhu, D., Dai, J., & Zheng, M. (2018). Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosensors and Bioelectronics, 100, 482–489. https://doi.org/10.1016/j.bios.2017.09.028
  • [25] Masawat, P., Harfield, A., & Namwong, A. (2015). An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chemistry, 184, 23–29. https://doi.org/10.1016/j.foodchem.2015.03.089
  • [26] Silva, A. F. S., & Rocha, F. R. P. (2020). A novel approach to detect milk adulteration based on the determination of protein content by smartphone-based digital image colorimetry. Food Control, 115. https://doi.org/10.1016/j.foodcont.2020.107299
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Ozan Yağmuroğlu 0000-0002-4703-6313

Publication Date December 30, 2022
Submission Date September 7, 2022
Published in Issue Year 2022

Cite

APA Yağmuroğlu, O. (2022). Determination of Total Antioxidant Capacities as Ascorbic Acid Equivalent of Tea Extract Samples from Different Brands Using Digital Image-Based Colorimetric Detection Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(4), 682-690. https://doi.org/10.29109/gujsc.1172357

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526