Research Article
BibTex RIS Cite

High Performance and Cycling Stability Supercapacitors Employing MnS@Polypyrrole Nanocomposites as Cathode Material

Year 2023, , 329 - 338, 23.06.2023
https://doi.org/10.29109/gujsc.1230743

Abstract

In this study, MnS metal sulphide was incorporated into polypyrrole (PPy) matrix, and the fabricated nanocomposites were used for the first time as active electrode in supercapacitor (SC) architecture. MnS was obtained in a short time (15 min) via simple microwave technique, and the nanocomposite was synthesised successfully with electropolymerization of PPy in presence of MnS on nickel foam. Incorporation of MnS changed the growth mechanism of PPy, leading to increase in surface area, electrocatalytic activity and conductivity of the resulted nanocomposites. More importantly, MnS@PPy electrode exhibited a specific capacitance (Cs) of 1102 F/g which is approximately 5.6 times higher than that of the bare PPy (197 F/g). Furthermore, energy density (Ed) of the bare PPy was determined as 4.37 W/kg, by incorporation of MnS into PPy matrix the Ed value increased to 24.5 W/kg. On the other hand, after 1000 charge/discharge cycles, the cycle stability of the bare PPy remained at 72%, while MnS@PPy nanocomposite electrode is 95 %. The reasons for these improvements can be listed as; i) the increase in conductivity of nanocomposite stem from the synergistic effect between MnS and PPy, ii) the enlargement of the active surface area, iii) the increase in the ion diffusion rate, iv) the improvement of charge transfer kinetics and v) the increase in stability against volume change. In the light of the results obtained from this study, it can be said that the MnS@PPy structured nanocomposite is a promising candidate for commercialization of SC applications.

Supporting Institution

Bartin University Coordination Department of Scientific Research Projects

Project Number

2020-FEN-A-020

Thanks

I would like to thank Bartin University Coordination Department of Scientific Research Projects for their financial support

References

  • [1] S. Unknown, P. Chand, A. Joshi, Biomass derived carbon for supercapacitor applications: Review, J Energy Storage. 39 (2021) 102646. https://doi.org/10.1016/j.est.2021.102646.
  • [2] A. Karimi, I. Kazeminezhad, L. Naderi, S. Shahrokhian, Construction of a Ternary Nanocomposite, Polypyrrole/Fe–Co Sulfide-Reduced Graphene Oxide/Nickel Foam, as a Novel Binder-Free Electrode for High-Performance Asymmetric Supercapacitors, The Journal of Physical Chemistry C. 124 (2020) 4393–4407. https://doi.org/10.1021/acs.jpcc.9b11010.
  • [3] Y.F. Fan, Z.L. Yi, G. Song, Z.F. Wang, C.J. Chen, L.J. Xie, G.H. Sun, F.Y. Su, C.M. Chen, Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors, Carbon N Y. 185 (2021) 630–640. https://doi.org/10.1016/J.CARBON.2021.09.059.
  • [4] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ Sci. 8 (2015) 702–730. https://doi.org/10.1039/C4EE03229B.
  • [5] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy. 36 (2017) 268–285. https://doi.org/10.1016/J.NANOEN.2017.04.040.
  • [6] H. Ji, C. Zhang, W. Rao, B. Guo, L. Fan, Z. Bai, H. Bao, J. Xu, Eco-friendly Polypyrrole-coated Cocozelle Composites for Supercapacitor Application, Fibers and Polymers. 21 (2020) 1300–1307. https://doi.org/10.1007/s12221-020-9375-0.
  • [7] I.K. Durga, S.S. Rao, R.M.N. Kalla, J.W. Ahn, H.J. Kim, Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors, J Energy Storage. 28 (2020). https://doi.org/10.1016/J.EST.2020.101216.
  • [8] F. Hamidouche, M.M.S. Sanad, Z. Ghebache, N. Boudieb, Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications, J Mol Struct. 1251 (2022). https://doi.org/10.1016/J.MOLSTRUC.2021.131964.
  • [9] R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application, Electrochim Acta. 346 (2020). https://doi.org/10.1016/J.ELECTACTA.2020.136270.
  • [10] J. Hao, H. Liu, S. Han, J. Lian, MoS2 Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications, ACS Appl Nano Mater. 4 (2021) 1330–1339. https://doi.org/10.1021/acsanm.0c02899.
  • [11] X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z.L. Wang, WO 3-x@Au@MnO 2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors, Advanced Materials. 24 (2012) 938–944. https://doi.org/10.1002/adma.201104113.
  • [12] T. Yi, S. Qi, Y. Li, L. Qiu, Y. Liu, Y. Zhu, J. Zhang, Y. Li, Facile Synthesis of Sheet Stacking Structure NiCo2S4@PPy with Enhanced Rate Capability and Cycling Performance for Aqueous Supercapacitors, Energy Technology. 8 (2020) 1–13. https://doi.org/10.1002/ente.202000096.
  • [13] S. Cheng, T. Shi, C. Chen, Y. Zhong, Y. Huang, X. Tao, J. Li, G. Liao, Z. Tang, Construction of porous CuCo 2 S 4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor OPEN, (2017). https://doi.org/10.1038/s41598-017-07102-1.
  • [14] C.H. Lai, M.Y. Lu, L.J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J Mater Chem. 22 (2011) 19–30. https://doi.org/10.1039/C1JM13879K.
  • [15] H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization, J Mater Chem A Mater. 2 (2014) 3303–3307. https://doi.org/10.1039/c3ta13859c.
  • [16] W. Huo, X. Zhang, X. Liu, H. Liu, Y. Zhu, Y. Zhang, J. Ji, F. Dong, Y. Zhang, Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage, Electrochim Acta. 334 (2020). https://doi.org/10.1016/J.ELECTACTA.2020.135635.
  • [17] X. Yan, J. Miao, J. Wang, H. Jiang, M. You, Y. Zhu, J. Pan, High-performance polypyrrole coated MoS2 nanosheets grown on carbon cloth as electrodes for flexible all-solid-state symmetric supercapacitor, Mater Sci Eng B Solid State Mater Adv Technol. 269 (2021). https://doi.org/10.1016/J.MSEB.2021.115166.
  • [18] R. Wei, Y. Dong, Y. Zhang, X. Kang, X. Sheng, J. Zhang, Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance, Nano Res. 15 (2022) 3273–3282. https://doi.org/10.1007/s12274-021-3973-z.
  • [19] Q. Liu, S.J. Zhang, C.C. Xiang, C.X. Luo, P.F. Zhang, C.G. Shi, Y. Zhou, J.T. Li, L. Huang, S.G. Sun, Cubic MnS-FeS2Composites Derived from a Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-Term Cycle Stability, ACS Appl Mater Interfaces. 12 (2020) 43624–43633. https://doi.org/10.1021/acsami.0c10874.
  • [20] Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, A.M. El-naggar, A. Albassam, Effect of composition ratio on the structural and optical properties of MnS@ZnS nanocomposites, Journal of Materials Science: Materials in Electronics. 31 (2020) 14746–14755. https://doi.org/10.1007/s10854-020-04038-7.
  • [21] Y. Chen, W. Ma, K. Cai, X. Yang, C. Huang, In Situ Growth of Polypyrrole onto Three-Dimensional Tubular MoS2 as an Advanced Negative Electrode Material for Supercapacitor, Electrochim Acta. 246 (2017) 615–624. https://doi.org/10.1016/J.ELECTACTA.2017.06.102.
  • [22] N.A. Niaz, A. Shakoor, M. Imran, N.R. Khalid, F. Hussain, H. Kanwal, M. Maqsood, S. Afzal, Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications, Journal of Materials Science: Materials in Electronics. 31 (2020) 11336–11344. https://doi.org/10.1007/s10854-020-03682-3.
  • [23] S. Ahmad, I. Khan, A. Husain, A. Khan, A.M. Asiri, Properties of Polypyrrole / MoS 2 Nanocomposite, (2020) 1–13.
  • [24] A. Husain, S.A. Al-Zahrani, A. Al Otaibi, I. Khan, M.M.A. Khan, A.M. Alosaimi, A. Khan, M.A. Hussein, A.M. Asiri, M. Jawaid, Fabrication of reproducible and selective ammonia vapor sensor-pellet of polypyrrole/cerium oxide nanocomposite for prompt detection at room temperature, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13111829.
  • [25] S. Abdi, M. Nasiri, A. Mesbahi, M.H. Khani, Investigation of uranium (VI) adsorption by polypyrrole, J Hazard Mater. 332 (2017) 132–139. https://doi.org/10.1016/J.JHAZMAT.2017.01.013.
  • [26] L. Seid, D. Lakhdari, M. Berkani, O. Belgherbi, D. Chouder, Y. Vasseghian, N. Lakhdari, High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials, J Hazard Mater. 423 (2022). https://doi.org/10.1016/J.JHAZMAT.2021.126986.
  • [27] X. Xiong, J. Chen, D. Zhang, A. Li, J. Zhang, X. Zeng, Hetero-structured nanocomposites of Ni/co/O/S for high-performance pseudo-supercapacitors, Electrochim Acta. 299 (2019) 298–311. https://doi.org/10.1016/J.ELECTACTA.2018.12.178.
  • [28] S. Kumar, S. Riyajuddin, M. Afshan, S.T. Aziz, T. Maruyama, K. Ghosh, In-Situ Growth of Urchin Manganese Sulfide Anchored Three-Dimensional Graphene (γ-MnS@3DG) on Carbon Cloth as a Flexible Asymmetric Supercapacitor, Journal of Physical Chemistry Letters. 12 (2021) 6574–6581. https://doi.org/10.1021/acs.jpclett.1c01553.
  • [29] S.C. Song, D.C. Zuo, C.S. An, X.H. Zhang, J.H. Li, Z.J. He, Y.J. Li, J.C. Zheng, Self-assembled GeOX/Ti3C2TX Composites as Promising Anode Materials for Lithium Ion Batteries, Inorg Chem. 59 (2020) 4711–4719. https://doi.org/10.1021/acs.inorgchem.9b03784.
Year 2023, , 329 - 338, 23.06.2023
https://doi.org/10.29109/gujsc.1230743

Abstract

Project Number

2020-FEN-A-020

References

  • [1] S. Unknown, P. Chand, A. Joshi, Biomass derived carbon for supercapacitor applications: Review, J Energy Storage. 39 (2021) 102646. https://doi.org/10.1016/j.est.2021.102646.
  • [2] A. Karimi, I. Kazeminezhad, L. Naderi, S. Shahrokhian, Construction of a Ternary Nanocomposite, Polypyrrole/Fe–Co Sulfide-Reduced Graphene Oxide/Nickel Foam, as a Novel Binder-Free Electrode for High-Performance Asymmetric Supercapacitors, The Journal of Physical Chemistry C. 124 (2020) 4393–4407. https://doi.org/10.1021/acs.jpcc.9b11010.
  • [3] Y.F. Fan, Z.L. Yi, G. Song, Z.F. Wang, C.J. Chen, L.J. Xie, G.H. Sun, F.Y. Su, C.M. Chen, Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors, Carbon N Y. 185 (2021) 630–640. https://doi.org/10.1016/J.CARBON.2021.09.059.
  • [4] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ Sci. 8 (2015) 702–730. https://doi.org/10.1039/C4EE03229B.
  • [5] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy. 36 (2017) 268–285. https://doi.org/10.1016/J.NANOEN.2017.04.040.
  • [6] H. Ji, C. Zhang, W. Rao, B. Guo, L. Fan, Z. Bai, H. Bao, J. Xu, Eco-friendly Polypyrrole-coated Cocozelle Composites for Supercapacitor Application, Fibers and Polymers. 21 (2020) 1300–1307. https://doi.org/10.1007/s12221-020-9375-0.
  • [7] I.K. Durga, S.S. Rao, R.M.N. Kalla, J.W. Ahn, H.J. Kim, Facile synthesis of FeS2/PVP composite as high-performance electrodes for supercapacitors, J Energy Storage. 28 (2020). https://doi.org/10.1016/J.EST.2020.101216.
  • [8] F. Hamidouche, M.M.S. Sanad, Z. Ghebache, N. Boudieb, Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications, J Mol Struct. 1251 (2022). https://doi.org/10.1016/J.MOLSTRUC.2021.131964.
  • [9] R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application, Electrochim Acta. 346 (2020). https://doi.org/10.1016/J.ELECTACTA.2020.136270.
  • [10] J. Hao, H. Liu, S. Han, J. Lian, MoS2 Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications, ACS Appl Nano Mater. 4 (2021) 1330–1339. https://doi.org/10.1021/acsanm.0c02899.
  • [11] X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z.L. Wang, WO 3-x@Au@MnO 2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors, Advanced Materials. 24 (2012) 938–944. https://doi.org/10.1002/adma.201104113.
  • [12] T. Yi, S. Qi, Y. Li, L. Qiu, Y. Liu, Y. Zhu, J. Zhang, Y. Li, Facile Synthesis of Sheet Stacking Structure NiCo2S4@PPy with Enhanced Rate Capability and Cycling Performance for Aqueous Supercapacitors, Energy Technology. 8 (2020) 1–13. https://doi.org/10.1002/ente.202000096.
  • [13] S. Cheng, T. Shi, C. Chen, Y. Zhong, Y. Huang, X. Tao, J. Li, G. Liao, Z. Tang, Construction of porous CuCo 2 S 4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor OPEN, (2017). https://doi.org/10.1038/s41598-017-07102-1.
  • [14] C.H. Lai, M.Y. Lu, L.J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage, J Mater Chem. 22 (2011) 19–30. https://doi.org/10.1039/C1JM13879K.
  • [15] H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization, J Mater Chem A Mater. 2 (2014) 3303–3307. https://doi.org/10.1039/c3ta13859c.
  • [16] W. Huo, X. Zhang, X. Liu, H. Liu, Y. Zhu, Y. Zhang, J. Ji, F. Dong, Y. Zhang, Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage, Electrochim Acta. 334 (2020). https://doi.org/10.1016/J.ELECTACTA.2020.135635.
  • [17] X. Yan, J. Miao, J. Wang, H. Jiang, M. You, Y. Zhu, J. Pan, High-performance polypyrrole coated MoS2 nanosheets grown on carbon cloth as electrodes for flexible all-solid-state symmetric supercapacitor, Mater Sci Eng B Solid State Mater Adv Technol. 269 (2021). https://doi.org/10.1016/J.MSEB.2021.115166.
  • [18] R. Wei, Y. Dong, Y. Zhang, X. Kang, X. Sheng, J. Zhang, Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance, Nano Res. 15 (2022) 3273–3282. https://doi.org/10.1007/s12274-021-3973-z.
  • [19] Q. Liu, S.J. Zhang, C.C. Xiang, C.X. Luo, P.F. Zhang, C.G. Shi, Y. Zhou, J.T. Li, L. Huang, S.G. Sun, Cubic MnS-FeS2Composites Derived from a Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-Term Cycle Stability, ACS Appl Mater Interfaces. 12 (2020) 43624–43633. https://doi.org/10.1021/acsami.0c10874.
  • [20] Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, A.M. El-naggar, A. Albassam, Effect of composition ratio on the structural and optical properties of MnS@ZnS nanocomposites, Journal of Materials Science: Materials in Electronics. 31 (2020) 14746–14755. https://doi.org/10.1007/s10854-020-04038-7.
  • [21] Y. Chen, W. Ma, K. Cai, X. Yang, C. Huang, In Situ Growth of Polypyrrole onto Three-Dimensional Tubular MoS2 as an Advanced Negative Electrode Material for Supercapacitor, Electrochim Acta. 246 (2017) 615–624. https://doi.org/10.1016/J.ELECTACTA.2017.06.102.
  • [22] N.A. Niaz, A. Shakoor, M. Imran, N.R. Khalid, F. Hussain, H. Kanwal, M. Maqsood, S. Afzal, Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications, Journal of Materials Science: Materials in Electronics. 31 (2020) 11336–11344. https://doi.org/10.1007/s10854-020-03682-3.
  • [23] S. Ahmad, I. Khan, A. Husain, A. Khan, A.M. Asiri, Properties of Polypyrrole / MoS 2 Nanocomposite, (2020) 1–13.
  • [24] A. Husain, S.A. Al-Zahrani, A. Al Otaibi, I. Khan, M.M.A. Khan, A.M. Alosaimi, A. Khan, M.A. Hussein, A.M. Asiri, M. Jawaid, Fabrication of reproducible and selective ammonia vapor sensor-pellet of polypyrrole/cerium oxide nanocomposite for prompt detection at room temperature, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13111829.
  • [25] S. Abdi, M. Nasiri, A. Mesbahi, M.H. Khani, Investigation of uranium (VI) adsorption by polypyrrole, J Hazard Mater. 332 (2017) 132–139. https://doi.org/10.1016/J.JHAZMAT.2017.01.013.
  • [26] L. Seid, D. Lakhdari, M. Berkani, O. Belgherbi, D. Chouder, Y. Vasseghian, N. Lakhdari, High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials, J Hazard Mater. 423 (2022). https://doi.org/10.1016/J.JHAZMAT.2021.126986.
  • [27] X. Xiong, J. Chen, D. Zhang, A. Li, J. Zhang, X. Zeng, Hetero-structured nanocomposites of Ni/co/O/S for high-performance pseudo-supercapacitors, Electrochim Acta. 299 (2019) 298–311. https://doi.org/10.1016/J.ELECTACTA.2018.12.178.
  • [28] S. Kumar, S. Riyajuddin, M. Afshan, S.T. Aziz, T. Maruyama, K. Ghosh, In-Situ Growth of Urchin Manganese Sulfide Anchored Three-Dimensional Graphene (γ-MnS@3DG) on Carbon Cloth as a Flexible Asymmetric Supercapacitor, Journal of Physical Chemistry Letters. 12 (2021) 6574–6581. https://doi.org/10.1021/acs.jpclett.1c01553.
  • [29] S.C. Song, D.C. Zuo, C.S. An, X.H. Zhang, J.H. Li, Z.J. He, Y.J. Li, J.C. Zheng, Self-assembled GeOX/Ti3C2TX Composites as Promising Anode Materials for Lithium Ion Batteries, Inorg Chem. 59 (2020) 4711–4719. https://doi.org/10.1021/acs.inorgchem.9b03784.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Mahir Gülen 0000-0002-6001-8494

Project Number 2020-FEN-A-020
Early Pub Date May 24, 2023
Publication Date June 23, 2023
Submission Date January 7, 2023
Published in Issue Year 2023

Cite

APA Gülen, M. (2023). High Performance and Cycling Stability Supercapacitors Employing MnS@Polypyrrole Nanocomposites as Cathode Material. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(2), 329-338. https://doi.org/10.29109/gujsc.1230743

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526