Research Article
BibTex RIS Cite

Investigation of the Effect of Tempering and Cryogenic Treatment on Mechanical Properties of Boron Steels

Year 2023, , 300 - 308, 23.06.2023
https://doi.org/10.29109/gujsc.1271368

Abstract

Boron steels are a group of steels that stand out with their high wear resistance and hardenability. In this study, 33MnCrB5-2 boron steel was shaped by applying hot forging process. After the hot forging process, the microstructure examinations and mechanical tests of the materials were carried out. A group of materials was cryogenically treated at -80 °C for 2 hours. Then, a different group of materials was austenitized at 890 °C and quenched, and then tempered at 400 °C for 90 minutes. In the last group of materials, after tempering heat treatment, cryogenic treatment was applied at -80 °C for 2 hours. Hardness and abrasion tests were carried out on the samples that were subjected to cryogenic treatment and tempering heat treatment. Microstructure analyzes were examined with the help of scanning electron microscope (SEM) and optical microscope. Element distributions from different regions in the microstructure were analyzed with energy-dispersive X-ray spectrometry (EDS). The crystallite size of the materials were calculated by X-ray diffraction. The results showed that the hardness value and wear resistance of the samples that were cryogenically treated after tempering gave higher values compared to the other samples.

Supporting Institution

Gazi University

Project Number

FYL-2021-7393

Thanks

This study was supported by Gazi University Scientific Research Project Program (Project No FYL-2021-7393). We thank Gazi University for their financial support and laboratory facilities

References

  • [1] Shi, Z., Wang, J., Chai, X., Wang, S., Chen, G., & Wang, R. (2020). Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Materials Letters, 258, 126819. https://doi.org/10.1016/j.engfailanal.2021.105333
  • [2] Terzic, A., Calcagnotto, M., Guk, S., Schulz, T., & Kawalla, R. (2013). Influence of Boron on transformation behavior during continuous cooling of low alloyed steels. Materials Science and Engineering: A, 584, 32-40. https://doi.org/10.1016/j.msea.2013.07.010
  • [3] Koley, S., Karani, A., Chatterjee, S., & Shome, M. (2018). Influence of boron on austenite to ferrite transformation behavior of low carbon steel under continuous cooling. Journal of Materials Engineering and Performance, 27, 3449-3459. https://doi.org/10.1007/s11665-018-3459-7
  • [4] Brown, A., Garnish, J. D., & Honeycombe, R. W. K. (1974). The distribution of boron in pure iron. Metal Science, 8(1), 317-324. https://doi.org/10.1179/msc.1974.8.1.317
  • [5] Williams, T. M., Stoneham, A. M., & Harries, D. R. (1976). The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel. Metal Science, 10(1), 14-19. https://doi.org/10.1179/030634576790431471
  • [6] Lanier, L., Metauer, G., & Moukassi, M. (1994). Microprecipitation in boron-containing high-carbon steels. Microchimica Acta, 114, 353-361. https://doi.org/10.1007/BF01244562
  • [7] Antunes, J. P. G., & Nunes, C. A. (2017). Characterization of impact toughness properties of DIN39MnCrB6-2 steel grade. Materials Research, 21. https://doi.org/10.1590/1980-5373-MR-2017-0332
  • [8] Melloy, G. F., Summon, P. R., & Podgursky, P. P. (1973). Optimizing the boron effect. Metallurgical transactions, 4, 2279-2289. https://doi.org/10.1007/BF02669367
  • [9] Sakuraya, K., Okada, H., & Abe, F. (2006). Influence of heat treatment on formation behavior of boron nitride inclusions in P122 heat resistant steel. ISIJ international, 46(11), 1712-1719. https://doi.org/10.2355/isijinternational.46.1712
  • [10] SF, M., Chapa, M., Valles, P., Quispe, A., & MI, V. (1999). Influence of Ti and N contents on austenite grain control and precipitate size in structural steels. ISIJ international, 39(9), 930-936. https://doi.org/10.2355/isijinternational.39.930
  • [11] Ishikawa, S., Pfaendtner, J. A., & McMahon Jr, C. J. (1999). The effect of boron on stress-relief cracking of alloy steels. Materials Science and Engineering: A, 272(1), 16-23. https://doi.org/10.1016/S0921-5093(99)00457-8
  • [12] Yamanaka, K., & Ohmori, Y. (1977). Effect of boron on transformation of low-carbon low-alloy steels. Transactions of the Iron and Steel Institute of Japan, 17(2), 92-101. https://doi.org/10.2355/isijinternational1966.17.92
  • [13] Morri, A., Ceshini, L., Pellizzari, M., Menapace, C., Vettore, F., & Veneri, E. (2017). Effect of the austempering process on the microstructure and mechanical properties of 27mncrb5-2 steel. Archives of Metallurgy and Materials, 62(2A), 643-651. https://doi.org/10.1515/amm-2017-0094
  • [14] So, H., Faßmann, D., Hoffmann, H., Golle, R., & Schaper, M. (2012). An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. Journal of Materials Processing Technology, 212(2), 437-449. https://doi.org/10.1016/j.jmatprotec.2011.10.006
  • [15] Cho, K. C., Mun, D. J., Kim, J. Y., Park, J. K., Lee, J. S., & Koo, Y. M. (2010). Effect of boron precipitation behavior on the hot ductility of boron containing steel. Metallurgical and Materials Transactions A, 41, 1421-1428. https://doi.org/10.1007/s11661-010-0211-9
  • [16] Altuntaş, G., Altuntaş, O., Öztürk, M. K., & Bostan, B. (2022). Metallurgical and Crystallographic Analysis of Different Amounts of Deformation Applied to Hadfield Steel. International Journal of Metalcasting, 1-10. https://doi.org/10.1007/s40962-022-00860-3
  • • [17] Altuntaş, O., Güral, A., & Tekeli, S. (2022). Microstructure engineering for superior wear and impact toughness strength of hypereutectoid powder metallurgy steel. Powder Metallurgy, 65(2), 101-111. https://doi.org/10.1080/00325899.2021.1954280
  • [18] Deva, A., Jha, B. K., & Mishra, N. S. (2011). Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel. Materials Science and Engineering: A, 528(24), 7375-7380. https://doi.org/10.1016/j.msea.2011.06.030
  • [19] Akhbarizadeh, A., Golozar, M. A., Shafeie, A., & Kholghy, M. (2009). Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment. Journal of iron and Steel research International, 16(6), 29-32. https://doi.org/10.1016/S1006-706X(10)60023-4
  • [20] Shinde, T. (2021). Influence of carbide particle size on the wear performance of cryogenically treated H13 die steel. Surface Engineering, 37(9), 1206-1214. https://doi.org/10.1080/02670844.2019.1701858
  • [21] Dhokey, N. B., Maske, S. S., & Ghosh, P. (2021). Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13). Materials Today: Proceedings, 43, 3006-3013. https://doi.org/10.1016/j.matpr.2021.01.361
  • [22] da Silva Septimio, R., Button, S. T., & Van Tyne, C. J. (2016). Processing maps for the analysis of hot workability of microalloyed steels 38MnSiVS5 and 0.39 C1. 47Mn. Journal of materials science, 51, 2512-2528. https://doi.org/10.1007/s10853-015-9563-2
  • [23] Jahazi, M., & Eghbali, B. (2001). The influence of hot forging conditions on the microstructure and mechanical properties of two microalloyed steels. Journal of Materials Processing Technology, 113(1-3), 594-598. https://doi.org/10.1016/S0924-0136(01)00599-4
  • [24] Madariaga, I., Gutierrez, I., Garcı́a-de Andrés, C., & Capdevila, C. (1999). Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling. Scripta Materialia, 41(3), 229-235. https://doi.org/10.1016/S1359-6462(99)00149-9
  • [25] Hansen, N. (2004). Hall–Petch relation and boundary strengthening. Scripta materialia, 51(8), 801-806. https://doi.org/10.1016/j.scriptamat.2004.06.002
  • [26] Cahn, J. W. (1959). Free energy of a nonuniform system. II. Thermodynamic basis. The Journal of chemical physics, 30(5), 1121-1124. https://doi.org/10.1063/1.1730145
  • [27] Dini, G., Vaghefi, M. M., & Shafyei, A. (2006). The influence of reheating temperature and direct-cooling rate after forging on microstructure and mechanical properties of V-microalloyed steel 38MnSiVS5. ISIJ international, 46(1), 89-92 https://doi.org/10.2355/isijinternational.46.89
  • [28] G. K. Williamson, & W. H. Hall. "X-ray line broadening from filed aluminium and wolfram, Acta metallurgica. 1.1 (1953), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  • [29] Barcellona, A., & Palmeri, D. (2009). Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metallurgical and Materials Transactions A, 40, 1160-1174. https://doi.org/10.1007/s11661-009-9790-8
  • [30] El-Shennawy, M., Farahat, A. I., Masoud, M. I., & Abdel–Aziz, A. I. (2016). Heat treatment effect on micro–alloyed low carbon steel with different Boron content. International Journal of Mechanical Engineering (IJME), 5(4), 9-20.

Borlu Çeliklere Uygulanan Temperleme ve Kriyojenik İşlemin Mekanik Özelliklere Etkisinin İncelenmesi

Year 2023, , 300 - 308, 23.06.2023
https://doi.org/10.29109/gujsc.1271368

Abstract

Borlu çelikler, aşınma direnci yüksek ve sertleşebilme kabiliyeti ile ön plana çıkmış bir çelik grubudur. Bu çalışma da 33MnCrB5-2 borlu çeliğe sıcak dövme işlemi uygulanarak şekillendirilmiştir. Sıcak dövme işlemi sonrası malzemelerin mikroyapı incelemeleri ve mekanik testleri yapılmıştır. Bir grup malzemeye -80 °C de 2 saat kriyojenik işlem uygulanmıştır. Ardından farklı bir grup malzeme 890 °C östenitlenip su verilmiş ardından 400 °C’de 90 dakika temperleme işlemi uygulanmıştır. Son grup malzeme de temperleme ısıl işlemi sonrası -80 °C de 2 saat kriyojenik işlem uygulanmıştır. Kriyojenik işlem ve temperleme ısıl işlemi uygulanan numunelerin mekanik olarak sertlik ve aşınma testi yapılmıştır. Mikroyapı analizleri tarama elektron mikroskobu (SEM) ve optik mikroskop yardımı ile incelenmiştir. Enerji-dağıtıcı X-ışını spektrometresi (EDS) ile ısıl işlemler sonrası mikroyapıdaki farklı bölgelerden element dağılımları analiz edilmiştir. X-ışını difraksiyonu ile malzemelerin tane boyutları hesaplanmıştır. Sonuçlar temperleme sonrası kriyojenik işlem uygulanan numunelerin sertlik değerinin ve aşınma dayanımının diğer numunelere kıyasla daha yüksek değerler verdiğini göstermiştir.

Project Number

FYL-2021-7393

References

  • [1] Shi, Z., Wang, J., Chai, X., Wang, S., Chen, G., & Wang, R. (2020). Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Materials Letters, 258, 126819. https://doi.org/10.1016/j.engfailanal.2021.105333
  • [2] Terzic, A., Calcagnotto, M., Guk, S., Schulz, T., & Kawalla, R. (2013). Influence of Boron on transformation behavior during continuous cooling of low alloyed steels. Materials Science and Engineering: A, 584, 32-40. https://doi.org/10.1016/j.msea.2013.07.010
  • [3] Koley, S., Karani, A., Chatterjee, S., & Shome, M. (2018). Influence of boron on austenite to ferrite transformation behavior of low carbon steel under continuous cooling. Journal of Materials Engineering and Performance, 27, 3449-3459. https://doi.org/10.1007/s11665-018-3459-7
  • [4] Brown, A., Garnish, J. D., & Honeycombe, R. W. K. (1974). The distribution of boron in pure iron. Metal Science, 8(1), 317-324. https://doi.org/10.1179/msc.1974.8.1.317
  • [5] Williams, T. M., Stoneham, A. M., & Harries, D. R. (1976). The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel. Metal Science, 10(1), 14-19. https://doi.org/10.1179/030634576790431471
  • [6] Lanier, L., Metauer, G., & Moukassi, M. (1994). Microprecipitation in boron-containing high-carbon steels. Microchimica Acta, 114, 353-361. https://doi.org/10.1007/BF01244562
  • [7] Antunes, J. P. G., & Nunes, C. A. (2017). Characterization of impact toughness properties of DIN39MnCrB6-2 steel grade. Materials Research, 21. https://doi.org/10.1590/1980-5373-MR-2017-0332
  • [8] Melloy, G. F., Summon, P. R., & Podgursky, P. P. (1973). Optimizing the boron effect. Metallurgical transactions, 4, 2279-2289. https://doi.org/10.1007/BF02669367
  • [9] Sakuraya, K., Okada, H., & Abe, F. (2006). Influence of heat treatment on formation behavior of boron nitride inclusions in P122 heat resistant steel. ISIJ international, 46(11), 1712-1719. https://doi.org/10.2355/isijinternational.46.1712
  • [10] SF, M., Chapa, M., Valles, P., Quispe, A., & MI, V. (1999). Influence of Ti and N contents on austenite grain control and precipitate size in structural steels. ISIJ international, 39(9), 930-936. https://doi.org/10.2355/isijinternational.39.930
  • [11] Ishikawa, S., Pfaendtner, J. A., & McMahon Jr, C. J. (1999). The effect of boron on stress-relief cracking of alloy steels. Materials Science and Engineering: A, 272(1), 16-23. https://doi.org/10.1016/S0921-5093(99)00457-8
  • [12] Yamanaka, K., & Ohmori, Y. (1977). Effect of boron on transformation of low-carbon low-alloy steels. Transactions of the Iron and Steel Institute of Japan, 17(2), 92-101. https://doi.org/10.2355/isijinternational1966.17.92
  • [13] Morri, A., Ceshini, L., Pellizzari, M., Menapace, C., Vettore, F., & Veneri, E. (2017). Effect of the austempering process on the microstructure and mechanical properties of 27mncrb5-2 steel. Archives of Metallurgy and Materials, 62(2A), 643-651. https://doi.org/10.1515/amm-2017-0094
  • [14] So, H., Faßmann, D., Hoffmann, H., Golle, R., & Schaper, M. (2012). An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process. Journal of Materials Processing Technology, 212(2), 437-449. https://doi.org/10.1016/j.jmatprotec.2011.10.006
  • [15] Cho, K. C., Mun, D. J., Kim, J. Y., Park, J. K., Lee, J. S., & Koo, Y. M. (2010). Effect of boron precipitation behavior on the hot ductility of boron containing steel. Metallurgical and Materials Transactions A, 41, 1421-1428. https://doi.org/10.1007/s11661-010-0211-9
  • [16] Altuntaş, G., Altuntaş, O., Öztürk, M. K., & Bostan, B. (2022). Metallurgical and Crystallographic Analysis of Different Amounts of Deformation Applied to Hadfield Steel. International Journal of Metalcasting, 1-10. https://doi.org/10.1007/s40962-022-00860-3
  • • [17] Altuntaş, O., Güral, A., & Tekeli, S. (2022). Microstructure engineering for superior wear and impact toughness strength of hypereutectoid powder metallurgy steel. Powder Metallurgy, 65(2), 101-111. https://doi.org/10.1080/00325899.2021.1954280
  • [18] Deva, A., Jha, B. K., & Mishra, N. S. (2011). Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel. Materials Science and Engineering: A, 528(24), 7375-7380. https://doi.org/10.1016/j.msea.2011.06.030
  • [19] Akhbarizadeh, A., Golozar, M. A., Shafeie, A., & Kholghy, M. (2009). Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment. Journal of iron and Steel research International, 16(6), 29-32. https://doi.org/10.1016/S1006-706X(10)60023-4
  • [20] Shinde, T. (2021). Influence of carbide particle size on the wear performance of cryogenically treated H13 die steel. Surface Engineering, 37(9), 1206-1214. https://doi.org/10.1080/02670844.2019.1701858
  • [21] Dhokey, N. B., Maske, S. S., & Ghosh, P. (2021). Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13). Materials Today: Proceedings, 43, 3006-3013. https://doi.org/10.1016/j.matpr.2021.01.361
  • [22] da Silva Septimio, R., Button, S. T., & Van Tyne, C. J. (2016). Processing maps for the analysis of hot workability of microalloyed steels 38MnSiVS5 and 0.39 C1. 47Mn. Journal of materials science, 51, 2512-2528. https://doi.org/10.1007/s10853-015-9563-2
  • [23] Jahazi, M., & Eghbali, B. (2001). The influence of hot forging conditions on the microstructure and mechanical properties of two microalloyed steels. Journal of Materials Processing Technology, 113(1-3), 594-598. https://doi.org/10.1016/S0924-0136(01)00599-4
  • [24] Madariaga, I., Gutierrez, I., Garcı́a-de Andrés, C., & Capdevila, C. (1999). Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling. Scripta Materialia, 41(3), 229-235. https://doi.org/10.1016/S1359-6462(99)00149-9
  • [25] Hansen, N. (2004). Hall–Petch relation and boundary strengthening. Scripta materialia, 51(8), 801-806. https://doi.org/10.1016/j.scriptamat.2004.06.002
  • [26] Cahn, J. W. (1959). Free energy of a nonuniform system. II. Thermodynamic basis. The Journal of chemical physics, 30(5), 1121-1124. https://doi.org/10.1063/1.1730145
  • [27] Dini, G., Vaghefi, M. M., & Shafyei, A. (2006). The influence of reheating temperature and direct-cooling rate after forging on microstructure and mechanical properties of V-microalloyed steel 38MnSiVS5. ISIJ international, 46(1), 89-92 https://doi.org/10.2355/isijinternational.46.89
  • [28] G. K. Williamson, & W. H. Hall. "X-ray line broadening from filed aluminium and wolfram, Acta metallurgica. 1.1 (1953), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  • [29] Barcellona, A., & Palmeri, D. (2009). Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel. Metallurgical and Materials Transactions A, 40, 1160-1174. https://doi.org/10.1007/s11661-009-9790-8
  • [30] El-Shennawy, M., Farahat, A. I., Masoud, M. I., & Abdel–Aziz, A. I. (2016). Heat treatment effect on micro–alloyed low carbon steel with different Boron content. International Journal of Mechanical Engineering (IJME), 5(4), 9-20.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Gözde Altuntaş 0000-0003-4504-0850

Ömer Faruk Kaplan 0000-0001-5280-3516

Bulent Bostan 0000-0002-6114-875X

Project Number FYL-2021-7393
Early Pub Date May 18, 2023
Publication Date June 23, 2023
Submission Date March 27, 2023
Published in Issue Year 2023

Cite

APA Altuntaş, G., Kaplan, Ö. F., & Bostan, B. (2023). Investigation of the Effect of Tempering and Cryogenic Treatment on Mechanical Properties of Boron Steels. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(2), 300-308. https://doi.org/10.29109/gujsc.1271368

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526