Research Article
BibTex RIS Cite

Investigation of the Effects of Ventilation Performance on Energy Consumption in Subway Stations and Tunnels

Year 2023, , 776 - 793, 27.09.2023
https://doi.org/10.29109/gujsc.1323450

Abstract

Increasing traffic density in big cities, increases the using subway as a means of transportation. Every day, thousands of people provide their transportation with using subways. However, the subway environment contains many pollutants especially particulate matter, carbon dioxide, volatile organic compounds and bad smells. It was proven as a result of studies that exposure to these pollutants will cause many health problems in the long run. In order to reduce pollutant levels in subway stations and provide passenger and personnel comfort, ventilation and air conditioning systems are needed. Ventilation systems are systems that consume a great deal of energy while creating a healthy indoor air quality in the subway environment. Fans, electric motors, the amount of carbon dioxide and the pollution factor in other equipment affect the energy consumed by ventilation systems. The fact that an environment has a healthy indoor air quality means that the ventilation system performs adequately. By designing efficient ventilation systems, the energy consumption of the ventilation system can be reduced while providing adequate indoor air quality in the environment. In this study, how the ventilation system works in a subway station, the pollutants in the subway environment, the factors affecting the energy consumed by the ventilation system are examined. Methods that can improve the indoor air quality in the environment by using energy more efficiently were proposed.

References

  • [1] Üser, Y., Yalçın, M. A., Özen, Ş. (2004). Endüstride Yüksek Verimli Motor Kullanımının Enerji Verimliliğine Etkileri. SAU Fen Bilimleri Enstitüsü Dergisi, 1, 55-61.
  • [2] Kim, J. Y., Kim, K. Y. (2009). Effects of Vent Shaft Location on theVentilation Performance in a Subway Tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 97, 174-179.
  • [3] Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Centelles, S., Minguillón, M. C., Amato, F., Alastuey, A., Querol, X., Gibbons, W. (2014). Subway Platform Air Quality: Assessing the Influences of Tunnel Ventilation, Train Piston Effect and Station Design. Atmospheric Environment, 92, 461-468.
  • [4] Chatterjee, A., Zhang, L., Xia, X. (2015). Optimization of Mine Ventilation Fan Speeds According to Ventilation on Demand and Time of Use Tariff. Applied Energy, 146, 65-73.
  • [5] Quan, J., Kim, S. H., Kim, J. H. (2018). A Study on Probabilistic Social Cost–Benefit Analysis to Introduce High-Efficiency Motors into Subway Station Ventilation. Energy Policy, 121, 92-100.
  • [6] Guan, B., Zhang, T., Liu, X. (2018). Performance Investigation of Outdoor Air Supply and Indoor Environment Related to Energy Consumption in Two Subway Stations. Sustainable Cities and Society, 41, 513-524.
  • [7] Zhang, Y., Li, X. (2018). A Study of Fresh Air Control in Subway Stations. Journal of Wind Engineering and Industrial Aerodynamics, 175, 384-390.
  • [8] Liu, M., Zhu, C., Zhang, H., Zheng, W., You, S., Campana, P. E., Yan, H. (2019). The Environment and Energy Consumption of a Subway Tunnel by the Influence of Piston Wind. Applied Energy, 246, 11-23.
  • [9] Li, G., Meng, X., Zhang, X., Zhang, L., Du, C., Li, N., Yu, W., Xiong, J., Zhang, S., Li, B. (2020). An Innovative Ventilation System Using Piston Wind for the Thermal Environment in Shanghai Subway Station. Journal of Building Engineering, 32, 101276.
  • [10] Su, Z., Li, X. (2020). Sub-System Energy Model Based on Actual Operation Data for Subway Stations. Sustainable Cities and Society, 52, 101835.
  • [11] He, D., Teng, X., Chen, Y., Yuan, Y., Li, X., Shan, S. (2021). Piston Wind Characteristic and Energy Saving of Metro Station Environmental Control System. Journal of Building Engineering, 44, 102664.
  • [12] Yu, Y., You, S., Zhang, H., Ye, T., Wang, Y., Wei, S. (2021). A Review on Available Energy Saving Strategies for Heating, Ventilation and Air Conditioning in Underground Metro Stations. Renewable and Sustainable Energy Reviews, 141, 110788.
  • [13] Cheng, F., Cui, C., Cai, W., Zhang, X., Ge, Y., Li, B. (2022). A Novel Data-Driven Air Balancing Method with Energy-Saving Constraint Strategy to Minimize the Energy Consumption of Ventilation System. Energy, 239, 122146.
  • [14] He, D., Teng, X., Chen, Y., Liu, B., Wang, H., Li, X., Ma., R. (2022). Energy Saving in Metro Ventilation System Based on Multi-Factor Analysis and Air Characteristics of Piston Vent. Applied Energy, 307, 118295.
  • [15] Su, Z., Li, X. (2022). Analysis of Energy-Saving for Ventilation and Air-Conditioning System of Subway Stations with Platform Screen Doors. Journal of Building Engineering, 59, 105064.
  • [16] Yang, J., Liu, M., Zhang, H., Zheng, W., You, S., Cui, T. (2022). Ventilation and Energy Performance Study on Platform Screen Doors with Adjustable Vents in a Subway Station. Tunelling and Underground Space Technology, 120, 104291.
  • [17] Bae, S., Kim, J., Yun, J. J. (2015). Energy Efficient Blower Control Strategy for the Ventilation System of a Metropolitan Subway Station. Indian Journal of Science and Technology, 8, 1-6.
  • [18] Liddament, M. (2015). Thermal Response and Plant Sizing. CIBSE Guide A Environmental Design.
  • [19] Doğan, H. (2018). Uygulamalı Havalandırma ve İklimlendirme Esasları, Seçkin Yayıncılık, Ankara, 241-244.
  • [20] ANSI/ASHRAE Standard 55-2013 (2013). Thermal Environmental Conditions for Human Occupancy, ASHRAE, Atlanta, GA, USA. [21] Abanoz, M. S. (2019). “İstanbul’da Metroların İç Hava Kalitesine Havalandırma Sistemlerinin Etkisi”, Yüksek Lisans Tezi, İstanbul Üniversitesi Cerrahpaşa Lisansüstü Eğitim Enstitüsü, İstanbul.
  • [22] Ryu, K. J., Juraeva, M., Jeong, S. H., Song, D. J. (2012). Ventilation Efficiency in the Subway Environment for the Indoor Air Quality. World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 3, 549-553.
  • [23] Nieuwenhuijsen, M. J., Gómez-Perales, J. E., Colvile, R. N. (2007). Levels of Particulate Air Pollution, Its Elemental Composition, Determinants and Health Effects in Metro Systems. Atmospheric Environment, 41, 7995-8006.
  • [24] Passi, A., Nagendra, S., Maiya, M. P. (2021). Characteristics of Indoor Air Quality in Underground Metro Stations: A Critical Review. Building and Environment, 198, 107907.
  • [25] Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., Tarlo, S. M. (2008). The Health Effects of Nonindustrial Indoor Air Pollution. Journal of Allergy and Clinical Immunology, 121, 585-591.
  • [26] Wang, Y., Li, J., Li, X. (2017). Subway Simulation of CO2 Concentration During Close Mode Operation. Sustainable Cities and Society, 28, 201-208.
  • [27] ASHRAE, Standard 62 (1989). Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
  • [28] ASHRAE Handbook (2003). HVAC Applications, ASHRAE.
  • [29] İnternet: Beyfan, “Havalandırmanın Önemi ve Gerekliliği”. URL: https://www.havalandirmafanlari.com/havalandirmanin-onemi.
  • [30] İnternet: AEM Laboratuvarı, “VOC (Uçucu Organik Bileşik) Nedir? VOC Ölçümü”. URL: https://www.aem.com.tr/voc-ucucu-organik-bilesik-nedir-voc-olcumu/.
  • [31] Zenz, C. (1988). Occupational Medicine: Principles and Practical Applications. ABD: Year Book Medical Publishers.
  • [32] Vallero, D. (2014). Fundamentals of Air Pollution, Academic Press, ABD, 197-214.
  • [33] Martins, V., Moreno, T., Minguillón, M. C., Amato, F., Miguel, E., Capdevila, M., Querol, X. (2015). Exposure to Airborne Particulate Matter in the Subway System. Science of The Total Environment, 511, 711-722.
  • [34] Park, J. H., Son, Y. S., Kim, K. H. (2019). A Review of Traditional and Advanced Technologies fort he Removal of Particulate Matter in Subway Systems. Indoor Air, 29, 157-363.
  • [35] Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C. A., Duarte, M., Miguel, E., Capdevila, M., Querol, X., Minguillón, M. C. (2016). Factors Controlling Air Quality in Different European Subway Systems. Environmental Research, 146, 35-46.
  • [36] Morrow, P. E. (1964). Evaluation of Inhalation Hazards Based Upon the respirable Dust Concept and the Philosophy and Application of Selective Sampling. American Industrial Hygiene Association Journal, 25, 213-236.
  • [37] ASHRAE, Standard 62 (2001). Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
  • [38] Karlsson, H. L., Nilsson, L., Möller, L. (2005). Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chemical Research in Toxicology, 18, 19-23.
  • [39] Bates, D. (1992). Health Indices of the Adverse Effects of Air Pollution: The Question of Co-herence. Environmental Research, 59, 336–349.
  • [40] Weaver, L., Hopkins, R., Chan, K., Churchill, S., Elliott, C., Clemmer, T. (2002). Hyperbaric Oxygen for Acute Carbon Monoxide Poisoning. New England Journal of Medicine, 347, 1057-67. [41] Aydın, F. (2013). Combine to the Ventilation Systems for Passengers and Tunnel Areas in Metro Systems, 2. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu, Karabük, Türkiye.
  • [42] Özbakır, E. (2007). Yeraltı Raylı Sistem İstasyonlarında Isıtma, Havalandırma, Klima Tesisatı. Tesisat Mühendisliği Dergisi, 97, 375-382.
  • [43] NFPA-130, (2010), Standard for Fixed Guideway Transit and Passanger Rail Systems, USA.
  • [44] Leng, J., Wen, Y. (2021). Environmental Standards for Healthy Ventilation in Metros: Status, Problems and Prospects. Energy & Buildings, 245, 111068.
  • [45] Neccar Ö. (2007). Üsküdar-Ümraniye Metro Projesi Mekanik Hesap Raporu. 7A Mühendislik, 30-43, İstanbul.
  • [46] Akgül Laloğlu, Ş. (2010). “Metro İstasyon ve Tünellerinde Havalandırma Sistemi Tasarımı”, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • [47] İnternet: Aironn, “Metro ve Demiryolu Havalandırma Sistemleri”. URL: https://www.aironn.com.tr/cozumler/metro-ve-demir-yolu-havalandirma-sistemleri.
  • [48] İnternet: Cvsair, “Metro Fanı-Ürün Özellikleri”. URL: https://cvsair.com.tr/metro-fani/.
  • [49] Cheng, G., Qi, M., Zhang, J., Wang, W., Cheng, Y. (2012). Analysis of the Stability of the Ventilation System in Baishan Coalmine. Procedia Engineering, 45, 311-316.
  • [50] Acuña, E., Hall, S., Hardcastle, S., Fava, L. (2010). The Application of a MIP Model to Select the Optimum Auxiliary Fan and Operational Settings for Multiple Period Duties. INFOR: Information Systems and Operational Research, 2, 95-102.
  • [51] Eliason, J. R., Fisher, B. S. (1977). Large Adjustable Speed Fan Drives Including Static Converter Developments for Cement Plants. IEEE Transactions on Industry Applications, 6, 557-562.
  • [52] Liu, H., Lee, S. C., Kim, M. J., Shi, H., Kim, J. T., Wasewar, K. L., Yoo, C. K. (2013). Multi-Objective Optimization of Indoor Air Quality Control and Energy Consumption Minimization in a Subway Ventilation System. Energy and Buildings, 66, 553-561.
  • [53] Doğan, H. (2017). Uygulamalı Havalandırma ve İklimlendirme Tekniği, Seçkin Yayıncılık, Ankara, 280-281.
  • [54] Canbazoğlu, S. (2020). Fan Mühendisliği, Doğa Yayıncılık, İstanbul, 233-243.
  • [55] Bulgurcu, H. (2015). Havalandırma Tesisatı, Makina Mühendisleri Odası İstanbul Şubesi, İstanbul.
  • [56] İnternet: International Electrotechnical Commission, “Electric Motors”. URL: https://www.iec.ch/government-regulators/electric-motors.
  • [57] Zöhra, B., Akar, M. (2019). Türkiye’de Verimli Elektrik Motorlarına Geçiş Süreci ve Şebeke Kalkışlı Sabit Mıknatıslı Senkron Motorlar. International Journal of Multidisciplinary Studies and Innovative Technologies, 3, 236-242.
  • [58] Aktaş, M., Durak, V., Tanrıkulu, Z. B., Güler, M., Gökben, D. (2023). Akışkan Yatak Kum Kurutma Sisteminde Fan Performansının Kurutm Maliyetine Etkisinin Araştırılması. 9th International Baskent Congress on Life, Engineering and Applied Sciences, Ankara, Türkiye, 86-87.
  • [59] İnternet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri”. URL: https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri#:~:text=Son%20olarak%2C%20elektrik%20t%C3%BCketim%20noktas%C4%B1,2%2De%C5%9Fd.%20sera%20gaz%C4%B1%20emisyonu.
  • [60] İnternet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Enerjini Boşa Harcama”. URL: https://webdosya.csb.gov.tr/db/samsun/webmenu/webmenu4374.pdf.
  • [61] EUROVENT 4/11, Energy Efficiency Classification of Air Filters for General Ventilation Purposes, Paris, France. [62] Gürdallar, M. (2004). Hijyen ve İç Hava Kalitesi Bakımından HVAC Sistemlerinin Temizliği. Tesisat Mühendisliği Dergisi, 82, 20-32.
  • [63] İnternet: Dağsan Havalandırma, “Hava Kanalları”. URL: https://www.dagsanhavalandirma.com/urundetay/hava-kanallari.
  • [64] Çengel, Y. A. (2011). Isı ve Kütle Transferi, Güven Kitabevi, İzmir, 615-617.
  • [65] Delwati, M., Merema, B., Breesch, H., Helsen, L., Sourbron, M. (2018). Impact of Demand Controlled Ventilation on System Performance and Energy Use. Energy and Buildings, 174, 111-123.
  • [66] Murphy, J., Ap, L., Bradley, B. (2005). CO2-Based Demand-Controlled Ventilation with ASHRAE Standard 62.1-2004. Engineers Newsletter, 34, 1-8.
  • [67] Schell, M. B., Turner, S. C., Omar, S. (1998). Application of CO2-Based Demand-Controlled Ventilation Using ASHRAE Standard 62: Optimizing Energy Use and Ventilation, ASHRAE Transactions, 104, 1213-1225.
  • [68] Kim, T. H., Choi, B. H., Kang, M. S., Lee, H. J. (2021). Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere, 12, 1463.
  • [69] Son, Y. S., Oh, Y. H., Choi, I. Y., Dinh, T. V., Chung, S. G., Lee, J. H., Park, D., Kim, J. C. (2019). Development of A Magnetic Hybrid Filter to Reduce PM10 in A Subway Platform. Journal of Hazardous Materials, 368, 197-203.
  • [70] Zhao, L., Wang, J., Gao, H. O., Xie, Y., Jiang, R., Hu, Q., Sun, Y. (2017). Evaluation of Particulate Matter Concentration in Shanghai’s Metro System and Strategy for Improvement. Transportation Research Part D: Transport and Environment, 53, 115-127.
  • [71] Moreno, T., Reche, C., Minguillón, M. C., Capdevila, M., de Miguel, E., Querol, X. (2017). The Effect of Ventilation Protocols on Airborne Particulate Matter in Subway Systems. Science of the Total Environment, 584-585, 1317-1323.
  • [72] İnternet: Metro İstanbul, “Enerjisini Kendi Üreten İstasyon”. URL: https://www.metro.istanbul/haber/detay/enerjisini-kendi-ureten-istasyon.
  • [73] İnternet: Bursa Büyükşehir Belediyesi, “Metro Durakları Enerji İstasyonuna Dönüyor”. URL: https://www.bursa.bel.tr/haber/metro-duraklari-enerji-istasyonuna-donuyor--29786.
  • [74] Babaei, P., Öğün, E., Güllü, G. (2017). Farklı Türdeki Hava Temizleme Cihazlarının Partikül Madde ve Formaldehit Giderim Etkinliklerinin Kıyaslanması. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 823-829, Antalya, Türkiye.

Metro İstasyon ve Tünellerinde Havalandırma Performansının Enerji Tüketimine Etkilerinin İncelenmesi

Year 2023, , 776 - 793, 27.09.2023
https://doi.org/10.29109/gujsc.1323450

Abstract

Büyük şehirlerde artan trafik yoğunluğu, bir ulaşım aracı olarak metro kullanımını arttırmaktadır. Her gün binlerce kişi ulaşımını metro kullanarak sağlamaktadır. Ancak metro ortamı partikül madde, karbondioksit, uçucu organik bileşikler ve kötü kokular başta olmak üzere birçok kirleticiyi barındırmaktadır. Bu kirleticilere maruz kalmanın uzun vadede birçok sağlık sorununa yol açacağı yapılan çalışmalar sonucunda kanıtlanmıştır. Metro istasyonlarında kirletici seviyelerini azaltarak yolcu ve personel konforunu sağlamak amacıyla havalandırma ve iklimlendirme sistemine gerek duyulur. Havalandırma sistemleri, metro ortamında sağlıklı bir iç hava kalitesi yaratırken büyük ölçüde enerji tüketen sistemlerdir. Fanlar, elektrik motorları, karbondioksit miktarı ve diğer ekipmanlarda oluşan kirlilik faktörü havalandırma sistemlerinin tükettiği enerjiye etki etmektedir. Bir ortamın sağlıklı iç hava kalitesine sahip olması, havalandırma sisteminin yeterli performans gösterdiği anlamına gelmektedir. Verimli havalandırma sistemlerinin tasarlanmasıyla ortamda yeterli iç hava kalitesi sağlanırken havalandırma sisteminin enerji tüketimi de azaltılabilir. Bu çalışmada bir metro istasyonunda havalandırma sisteminin nasıl çalıştığı, metro ortamındaki kirleticiler, havalandırma sisteminin tükettiği enerjiye etki eden faktörler incelenmiştir. Enerjiyi daha verimli kullanarak ortamdaki iç hava kalitesini iyileştirebilecek yöntemler önerilmiştir.

References

  • [1] Üser, Y., Yalçın, M. A., Özen, Ş. (2004). Endüstride Yüksek Verimli Motor Kullanımının Enerji Verimliliğine Etkileri. SAU Fen Bilimleri Enstitüsü Dergisi, 1, 55-61.
  • [2] Kim, J. Y., Kim, K. Y. (2009). Effects of Vent Shaft Location on theVentilation Performance in a Subway Tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 97, 174-179.
  • [3] Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Centelles, S., Minguillón, M. C., Amato, F., Alastuey, A., Querol, X., Gibbons, W. (2014). Subway Platform Air Quality: Assessing the Influences of Tunnel Ventilation, Train Piston Effect and Station Design. Atmospheric Environment, 92, 461-468.
  • [4] Chatterjee, A., Zhang, L., Xia, X. (2015). Optimization of Mine Ventilation Fan Speeds According to Ventilation on Demand and Time of Use Tariff. Applied Energy, 146, 65-73.
  • [5] Quan, J., Kim, S. H., Kim, J. H. (2018). A Study on Probabilistic Social Cost–Benefit Analysis to Introduce High-Efficiency Motors into Subway Station Ventilation. Energy Policy, 121, 92-100.
  • [6] Guan, B., Zhang, T., Liu, X. (2018). Performance Investigation of Outdoor Air Supply and Indoor Environment Related to Energy Consumption in Two Subway Stations. Sustainable Cities and Society, 41, 513-524.
  • [7] Zhang, Y., Li, X. (2018). A Study of Fresh Air Control in Subway Stations. Journal of Wind Engineering and Industrial Aerodynamics, 175, 384-390.
  • [8] Liu, M., Zhu, C., Zhang, H., Zheng, W., You, S., Campana, P. E., Yan, H. (2019). The Environment and Energy Consumption of a Subway Tunnel by the Influence of Piston Wind. Applied Energy, 246, 11-23.
  • [9] Li, G., Meng, X., Zhang, X., Zhang, L., Du, C., Li, N., Yu, W., Xiong, J., Zhang, S., Li, B. (2020). An Innovative Ventilation System Using Piston Wind for the Thermal Environment in Shanghai Subway Station. Journal of Building Engineering, 32, 101276.
  • [10] Su, Z., Li, X. (2020). Sub-System Energy Model Based on Actual Operation Data for Subway Stations. Sustainable Cities and Society, 52, 101835.
  • [11] He, D., Teng, X., Chen, Y., Yuan, Y., Li, X., Shan, S. (2021). Piston Wind Characteristic and Energy Saving of Metro Station Environmental Control System. Journal of Building Engineering, 44, 102664.
  • [12] Yu, Y., You, S., Zhang, H., Ye, T., Wang, Y., Wei, S. (2021). A Review on Available Energy Saving Strategies for Heating, Ventilation and Air Conditioning in Underground Metro Stations. Renewable and Sustainable Energy Reviews, 141, 110788.
  • [13] Cheng, F., Cui, C., Cai, W., Zhang, X., Ge, Y., Li, B. (2022). A Novel Data-Driven Air Balancing Method with Energy-Saving Constraint Strategy to Minimize the Energy Consumption of Ventilation System. Energy, 239, 122146.
  • [14] He, D., Teng, X., Chen, Y., Liu, B., Wang, H., Li, X., Ma., R. (2022). Energy Saving in Metro Ventilation System Based on Multi-Factor Analysis and Air Characteristics of Piston Vent. Applied Energy, 307, 118295.
  • [15] Su, Z., Li, X. (2022). Analysis of Energy-Saving for Ventilation and Air-Conditioning System of Subway Stations with Platform Screen Doors. Journal of Building Engineering, 59, 105064.
  • [16] Yang, J., Liu, M., Zhang, H., Zheng, W., You, S., Cui, T. (2022). Ventilation and Energy Performance Study on Platform Screen Doors with Adjustable Vents in a Subway Station. Tunelling and Underground Space Technology, 120, 104291.
  • [17] Bae, S., Kim, J., Yun, J. J. (2015). Energy Efficient Blower Control Strategy for the Ventilation System of a Metropolitan Subway Station. Indian Journal of Science and Technology, 8, 1-6.
  • [18] Liddament, M. (2015). Thermal Response and Plant Sizing. CIBSE Guide A Environmental Design.
  • [19] Doğan, H. (2018). Uygulamalı Havalandırma ve İklimlendirme Esasları, Seçkin Yayıncılık, Ankara, 241-244.
  • [20] ANSI/ASHRAE Standard 55-2013 (2013). Thermal Environmental Conditions for Human Occupancy, ASHRAE, Atlanta, GA, USA. [21] Abanoz, M. S. (2019). “İstanbul’da Metroların İç Hava Kalitesine Havalandırma Sistemlerinin Etkisi”, Yüksek Lisans Tezi, İstanbul Üniversitesi Cerrahpaşa Lisansüstü Eğitim Enstitüsü, İstanbul.
  • [22] Ryu, K. J., Juraeva, M., Jeong, S. H., Song, D. J. (2012). Ventilation Efficiency in the Subway Environment for the Indoor Air Quality. World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering, 3, 549-553.
  • [23] Nieuwenhuijsen, M. J., Gómez-Perales, J. E., Colvile, R. N. (2007). Levels of Particulate Air Pollution, Its Elemental Composition, Determinants and Health Effects in Metro Systems. Atmospheric Environment, 41, 7995-8006.
  • [24] Passi, A., Nagendra, S., Maiya, M. P. (2021). Characteristics of Indoor Air Quality in Underground Metro Stations: A Critical Review. Building and Environment, 198, 107907.
  • [25] Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., Tarlo, S. M. (2008). The Health Effects of Nonindustrial Indoor Air Pollution. Journal of Allergy and Clinical Immunology, 121, 585-591.
  • [26] Wang, Y., Li, J., Li, X. (2017). Subway Simulation of CO2 Concentration During Close Mode Operation. Sustainable Cities and Society, 28, 201-208.
  • [27] ASHRAE, Standard 62 (1989). Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
  • [28] ASHRAE Handbook (2003). HVAC Applications, ASHRAE.
  • [29] İnternet: Beyfan, “Havalandırmanın Önemi ve Gerekliliği”. URL: https://www.havalandirmafanlari.com/havalandirmanin-onemi.
  • [30] İnternet: AEM Laboratuvarı, “VOC (Uçucu Organik Bileşik) Nedir? VOC Ölçümü”. URL: https://www.aem.com.tr/voc-ucucu-organik-bilesik-nedir-voc-olcumu/.
  • [31] Zenz, C. (1988). Occupational Medicine: Principles and Practical Applications. ABD: Year Book Medical Publishers.
  • [32] Vallero, D. (2014). Fundamentals of Air Pollution, Academic Press, ABD, 197-214.
  • [33] Martins, V., Moreno, T., Minguillón, M. C., Amato, F., Miguel, E., Capdevila, M., Querol, X. (2015). Exposure to Airborne Particulate Matter in the Subway System. Science of The Total Environment, 511, 711-722.
  • [34] Park, J. H., Son, Y. S., Kim, K. H. (2019). A Review of Traditional and Advanced Technologies fort he Removal of Particulate Matter in Subway Systems. Indoor Air, 29, 157-363.
  • [35] Martins, V., Moreno, T., Mendes, L., Eleftheriadis, K., Diapouli, E., Alves, C. A., Duarte, M., Miguel, E., Capdevila, M., Querol, X., Minguillón, M. C. (2016). Factors Controlling Air Quality in Different European Subway Systems. Environmental Research, 146, 35-46.
  • [36] Morrow, P. E. (1964). Evaluation of Inhalation Hazards Based Upon the respirable Dust Concept and the Philosophy and Application of Selective Sampling. American Industrial Hygiene Association Journal, 25, 213-236.
  • [37] ASHRAE, Standard 62 (2001). Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
  • [38] Karlsson, H. L., Nilsson, L., Möller, L. (2005). Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chemical Research in Toxicology, 18, 19-23.
  • [39] Bates, D. (1992). Health Indices of the Adverse Effects of Air Pollution: The Question of Co-herence. Environmental Research, 59, 336–349.
  • [40] Weaver, L., Hopkins, R., Chan, K., Churchill, S., Elliott, C., Clemmer, T. (2002). Hyperbaric Oxygen for Acute Carbon Monoxide Poisoning. New England Journal of Medicine, 347, 1057-67. [41] Aydın, F. (2013). Combine to the Ventilation Systems for Passengers and Tunnel Areas in Metro Systems, 2. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu, Karabük, Türkiye.
  • [42] Özbakır, E. (2007). Yeraltı Raylı Sistem İstasyonlarında Isıtma, Havalandırma, Klima Tesisatı. Tesisat Mühendisliği Dergisi, 97, 375-382.
  • [43] NFPA-130, (2010), Standard for Fixed Guideway Transit and Passanger Rail Systems, USA.
  • [44] Leng, J., Wen, Y. (2021). Environmental Standards for Healthy Ventilation in Metros: Status, Problems and Prospects. Energy & Buildings, 245, 111068.
  • [45] Neccar Ö. (2007). Üsküdar-Ümraniye Metro Projesi Mekanik Hesap Raporu. 7A Mühendislik, 30-43, İstanbul.
  • [46] Akgül Laloğlu, Ş. (2010). “Metro İstasyon ve Tünellerinde Havalandırma Sistemi Tasarımı”, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli.
  • [47] İnternet: Aironn, “Metro ve Demiryolu Havalandırma Sistemleri”. URL: https://www.aironn.com.tr/cozumler/metro-ve-demir-yolu-havalandirma-sistemleri.
  • [48] İnternet: Cvsair, “Metro Fanı-Ürün Özellikleri”. URL: https://cvsair.com.tr/metro-fani/.
  • [49] Cheng, G., Qi, M., Zhang, J., Wang, W., Cheng, Y. (2012). Analysis of the Stability of the Ventilation System in Baishan Coalmine. Procedia Engineering, 45, 311-316.
  • [50] Acuña, E., Hall, S., Hardcastle, S., Fava, L. (2010). The Application of a MIP Model to Select the Optimum Auxiliary Fan and Operational Settings for Multiple Period Duties. INFOR: Information Systems and Operational Research, 2, 95-102.
  • [51] Eliason, J. R., Fisher, B. S. (1977). Large Adjustable Speed Fan Drives Including Static Converter Developments for Cement Plants. IEEE Transactions on Industry Applications, 6, 557-562.
  • [52] Liu, H., Lee, S. C., Kim, M. J., Shi, H., Kim, J. T., Wasewar, K. L., Yoo, C. K. (2013). Multi-Objective Optimization of Indoor Air Quality Control and Energy Consumption Minimization in a Subway Ventilation System. Energy and Buildings, 66, 553-561.
  • [53] Doğan, H. (2017). Uygulamalı Havalandırma ve İklimlendirme Tekniği, Seçkin Yayıncılık, Ankara, 280-281.
  • [54] Canbazoğlu, S. (2020). Fan Mühendisliği, Doğa Yayıncılık, İstanbul, 233-243.
  • [55] Bulgurcu, H. (2015). Havalandırma Tesisatı, Makina Mühendisleri Odası İstanbul Şubesi, İstanbul.
  • [56] İnternet: International Electrotechnical Commission, “Electric Motors”. URL: https://www.iec.ch/government-regulators/electric-motors.
  • [57] Zöhra, B., Akar, M. (2019). Türkiye’de Verimli Elektrik Motorlarına Geçiş Süreci ve Şebeke Kalkışlı Sabit Mıknatıslı Senkron Motorlar. International Journal of Multidisciplinary Studies and Innovative Technologies, 3, 236-242.
  • [58] Aktaş, M., Durak, V., Tanrıkulu, Z. B., Güler, M., Gökben, D. (2023). Akışkan Yatak Kum Kurutma Sisteminde Fan Performansının Kurutm Maliyetine Etkisinin Araştırılması. 9th International Baskent Congress on Life, Engineering and Applied Sciences, Ankara, Türkiye, 86-87.
  • [59] İnternet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Elektrik Üretimi ve Elektrik Tüketim Noktası Emisyon Faktörleri”. URL: https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri#:~:text=Son%20olarak%2C%20elektrik%20t%C3%BCketim%20noktas%C4%B1,2%2De%C5%9Fd.%20sera%20gaz%C4%B1%20emisyonu.
  • [60] İnternet: T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Enerjini Boşa Harcama”. URL: https://webdosya.csb.gov.tr/db/samsun/webmenu/webmenu4374.pdf.
  • [61] EUROVENT 4/11, Energy Efficiency Classification of Air Filters for General Ventilation Purposes, Paris, France. [62] Gürdallar, M. (2004). Hijyen ve İç Hava Kalitesi Bakımından HVAC Sistemlerinin Temizliği. Tesisat Mühendisliği Dergisi, 82, 20-32.
  • [63] İnternet: Dağsan Havalandırma, “Hava Kanalları”. URL: https://www.dagsanhavalandirma.com/urundetay/hava-kanallari.
  • [64] Çengel, Y. A. (2011). Isı ve Kütle Transferi, Güven Kitabevi, İzmir, 615-617.
  • [65] Delwati, M., Merema, B., Breesch, H., Helsen, L., Sourbron, M. (2018). Impact of Demand Controlled Ventilation on System Performance and Energy Use. Energy and Buildings, 174, 111-123.
  • [66] Murphy, J., Ap, L., Bradley, B. (2005). CO2-Based Demand-Controlled Ventilation with ASHRAE Standard 62.1-2004. Engineers Newsletter, 34, 1-8.
  • [67] Schell, M. B., Turner, S. C., Omar, S. (1998). Application of CO2-Based Demand-Controlled Ventilation Using ASHRAE Standard 62: Optimizing Energy Use and Ventilation, ASHRAE Transactions, 104, 1213-1225.
  • [68] Kim, T. H., Choi, B. H., Kang, M. S., Lee, H. J. (2021). Removal of Iron Oxide from Indoor Air at a Subway Station Using a Vegetation Biofilter: A Case Study of Seoul, Korea. Atmosphere, 12, 1463.
  • [69] Son, Y. S., Oh, Y. H., Choi, I. Y., Dinh, T. V., Chung, S. G., Lee, J. H., Park, D., Kim, J. C. (2019). Development of A Magnetic Hybrid Filter to Reduce PM10 in A Subway Platform. Journal of Hazardous Materials, 368, 197-203.
  • [70] Zhao, L., Wang, J., Gao, H. O., Xie, Y., Jiang, R., Hu, Q., Sun, Y. (2017). Evaluation of Particulate Matter Concentration in Shanghai’s Metro System and Strategy for Improvement. Transportation Research Part D: Transport and Environment, 53, 115-127.
  • [71] Moreno, T., Reche, C., Minguillón, M. C., Capdevila, M., de Miguel, E., Querol, X. (2017). The Effect of Ventilation Protocols on Airborne Particulate Matter in Subway Systems. Science of the Total Environment, 584-585, 1317-1323.
  • [72] İnternet: Metro İstanbul, “Enerjisini Kendi Üreten İstasyon”. URL: https://www.metro.istanbul/haber/detay/enerjisini-kendi-ureten-istasyon.
  • [73] İnternet: Bursa Büyükşehir Belediyesi, “Metro Durakları Enerji İstasyonuna Dönüyor”. URL: https://www.bursa.bel.tr/haber/metro-duraklari-enerji-istasyonuna-donuyor--29786.
  • [74] Babaei, P., Öğün, E., Güllü, G. (2017). Farklı Türdeki Hava Temizleme Cihazlarının Partikül Madde ve Formaldehit Giderim Etkinliklerinin Kıyaslanması. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, 823-829, Antalya, Türkiye.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Energy
Journal Section Tasarım ve Teknoloji
Authors

Yaren Güven 0000-0003-0732-4692

Mustafa Aktaş 0000-0003-1187-5120

Early Pub Date September 4, 2023
Publication Date September 27, 2023
Submission Date July 6, 2023
Published in Issue Year 2023

Cite

APA Güven, Y., & Aktaş, M. (2023). Metro İstasyon ve Tünellerinde Havalandırma Performansının Enerji Tüketimine Etkilerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 776-793. https://doi.org/10.29109/gujsc.1323450

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526