Research Article
BibTex RIS Cite

Kohezyonsuz Zeminlerde Kesme Bant Kalınlığı ve Rölatif Sıkılık Arasındaki İlişki

Year 2024, , 157 - 163, 25.03.2024
https://doi.org/10.29109/gujsc.1328632

Abstract

Bu çalışmada iri daneli zemin üzerinde, kesme kutusu deneyleri yapılarak kesme bant kalınlığı incelenmiştir. Standart kesme kutusu deneyi cihazının boyutları 15 cm x 15 cm x 9 cm olacak şekilde modifiye edilmiştir. Ayrıca, kesme kutusu deney cihazının bir yüzeyinde şeffaf plaka kullanılarak kesmebant kalınlığı bütün kesme aşaması süresince gözlemlenmiştir. Deneyler %30-%50-%80 sıkılık oranlarında ve sabit 54 kPa normal gerilme altında yapılmıştır. Deneyler yüksek çözünürlüklü kamerayla kayıt altına alınarak görüntü işleme yöntemiyle kesme bant kalınlığı belirlenmiştir. Deneylerde geotekstil kullanılarak, zemin-zemin ve zemin-geotekstil ara yüzey kesme durumlarında ortaya çıkan kesme bantları karşılaştırılmıştır. Geotekstil kullanılmadan gerçekleştirilen deneylerde %30, %50 ve %80 sıkılık durumları için sırasıyla kesme bant kalınlıkları 27.1 mm, 26.7 mm ve 25.2 mm bulunmuştur. Geotekstil in ara-yüzeye dahil edilmesiyle birlikte ise sırasıyla %30, %50 ve %80 kalınlıklar için kesme bant kalınlıkları 25.9 mm, 23.2 mm ve 20.2 mm olarak belirlenmiştir. Geotekstil kullanımı ile kesme bant kalınlıklarının azaldığı ve kesme bant oluşumunun geotekstil altında görülmediği belirlenmiştir

References

  • [1] T. W. Lambe and R. V Whitman, “Soil Mechanics.” John Wiley & Sons, p. 548, 1969.
  • [2] X. Y. Jing, W. H. Zhou, H. X. Zhu, Z. Y. Yin, and Y. Li, “On the interface shearing behavior between granular soil and artificial rough surfaces,” Springer Series in Geomechanics and Geoengineering, vol. 2, pp. 437–444, 2017, doi: 10.1007/978-3-319-52773-4_52.
  • [3] D. Lesniewska and M. Pietrzak, “Experimental investigations of micro-structural phenomena inside strain localisation in granular materials,” AIP Conf Proc, vol. 1542, no. June 2013, pp. 425–428, 2013, doi: 10.1063/1.4811958.
  • [4] X. B. Lu, S. Y. Wang, and C. Peng, “On the evolution of simple shear in saturated soil,” Int J Numer Anal Methods Geomech, vol. 28, no. 3, pp. 269–278, 2004, doi: 10.1002/nag.335.
  • [5] M. I. Peerun, D. E. L. Ong, and C. S. Choo, “Interpretation of Geomaterial Behavior during Shearing Aided by PIV Technology,” Journal of Materials in Civil Engineering, vol. 31, no. 9, 2019, doi: 10.1061/(asce)mt.1943-5533.0002834.
  • [6] A. Roy, N. Roy, P. Saha, and N. Mandal, “Factors Determining Shear-Parallel Versus Low-Angle Shear Band Localization in Shear Deformations: Laboratory Experiments and Numerical Simulations,” J Geophys Res Solid Earth, vol. 126, no. 10, pp. 1–23, 2021, doi: 10.1029/2021JB022578.
  • [7] J. Shen, X. Wang, W. Liu, P. Zhang, C. Zhu, and X. Wang, “Experimental study on mesoscopic shear behavior of calcareous sand material with digital imaging approach,” Advances in Civil Engineering, vol. 2020, 2020, doi: 10.1155/2020/8881264.
  • [8] T. Triantafyllidis, L. Röchter, A. Niemunis, and L. F. Prada-Sarmiento, “Shear banding in geomaterials under extensional plane strain conditions: Physical and analytical model,” Acta Geotech, vol. 6, no. 2, pp. 93–103, 2011, doi: 10.1007/s11440-011-0136-5.
  • [9] R. Khan and G. M. Latha, “Multi-scale understanding of sand-geosynthetic interface shear response through Micro-CT and shear band analysis,” Geotextiles and Geomembranes, vol. 51, no. 3, pp. 437–453, Sep. 2023, doi: 10.1016/j.geotexmem.2023.01.006.
  • [10] J. Pan et al., “Thickness of the shear band of silty clay–concrete interface based on the particle image velocimetry technique,” Constr Build Mater, vol. 388, Jul. 2023, doi: 10.1016/j.conbuildmat.2023.131712.
  • [11] R. An, X. Zhang, Y. Wang, C. Chen, and X. Chen, “Dynamic Evolution of Cracks in Slag-Modified Soil under Uniaxial Loading Using Real-Time X-Ray Computed Tomography,” Journal of Materials in Civil Engineering, vol. 35, no. 6, Jun. 2023, doi: 10.1061/jmcee7.mteng-14491.
  • [12] R. A. Jewell, “Direct shear tests on sand,” GEOTECHNIQUE, vol. 39, no. 2, pp. 309–322, 1989.
  • [13] P. Vangla and G. M. Latha, “Influence of Particle Size on the Friction and Interfacial Shear Strength of Sands of Similar Morphology,” International Journal of Geosynthetics and Ground Engineering, vol. 1, no. 1, 2015, doi: 10.1007/s40891-014-0008-9.
  • [14] A. D3080, “ASTM D 3080 - 03 Direct Shear Test of Soilds Under Consolidated Drained Conditions,” ASTM International, vol. 04, p. 7, 2003, [Online]. Available: www.astm.org
  • [15] L. K. Park, M. Suneel, and I. J. Chul, “Shear strength of jumunjin sand according to relative density,” Marine Georesources and Geotechnology, vol. 26, no. 2, pp. 101–110, 2008, doi: 10.1080/10641190802022445.
  • [16] A. Lashkari and V. Jamali, “Global and local sand–geosynthetic interface behaviour,” Geotechnique, vol. 71, no. 4, pp. 346–367, 2021, doi: 10.1680/jgeot.19.P.109.
  • [17] J. Lubliner, PLASTICITY THEORY. Pearson Education, Inc., 1990.
  • [18] X. G. Zhao and M. Cai, “A mobilized dilation angle model for rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 47, no. 3, pp. 368–384, 2010, doi: 10.1016/j.ijrmms.2009.12.007.

Relationship between Shearband Thickness and Relative Density for Cohesionless Soil

Year 2024, , 157 - 163, 25.03.2024
https://doi.org/10.29109/gujsc.1328632

Abstract

In this study, shear band thickness was examined by performing shear box tests on coarse-grained soil. The dimensions of the standard shear box experiment device were modified to be 15 cm x 15 cm x 9 cm. Additionally, the shear band thickness was observed throughout the entire shear phase by using a transparent plate on one surface of the shear box test device. The experiments were carried out at 30%-50%-80% relative densities and under a constant 54 kPa normal stress. The experiments were recorded with a high-resolution camera and the shear band thickness was determined by image processing method. By using geotextile in the experiments, reinforced and unreinforced conditions were compared. In the experiments carried out without using geotextile, the shear band thicknesses were found to be 27.1 mm, 26.7 mm and 25.2 mm for 30%, 50% and 80% tightness conditions, respectively. With the inclusion of geotextile in the interface, the shear band thicknesses were determined as 25.9 mm, 23.2 mm and 20.2 mm for 30%, 50% and 80% thicknesses, respectively. It was determined that shear band thicknesses decreased with the use of geotextile and shear band formation was not observed under the geotextile.

References

  • [1] T. W. Lambe and R. V Whitman, “Soil Mechanics.” John Wiley & Sons, p. 548, 1969.
  • [2] X. Y. Jing, W. H. Zhou, H. X. Zhu, Z. Y. Yin, and Y. Li, “On the interface shearing behavior between granular soil and artificial rough surfaces,” Springer Series in Geomechanics and Geoengineering, vol. 2, pp. 437–444, 2017, doi: 10.1007/978-3-319-52773-4_52.
  • [3] D. Lesniewska and M. Pietrzak, “Experimental investigations of micro-structural phenomena inside strain localisation in granular materials,” AIP Conf Proc, vol. 1542, no. June 2013, pp. 425–428, 2013, doi: 10.1063/1.4811958.
  • [4] X. B. Lu, S. Y. Wang, and C. Peng, “On the evolution of simple shear in saturated soil,” Int J Numer Anal Methods Geomech, vol. 28, no. 3, pp. 269–278, 2004, doi: 10.1002/nag.335.
  • [5] M. I. Peerun, D. E. L. Ong, and C. S. Choo, “Interpretation of Geomaterial Behavior during Shearing Aided by PIV Technology,” Journal of Materials in Civil Engineering, vol. 31, no. 9, 2019, doi: 10.1061/(asce)mt.1943-5533.0002834.
  • [6] A. Roy, N. Roy, P. Saha, and N. Mandal, “Factors Determining Shear-Parallel Versus Low-Angle Shear Band Localization in Shear Deformations: Laboratory Experiments and Numerical Simulations,” J Geophys Res Solid Earth, vol. 126, no. 10, pp. 1–23, 2021, doi: 10.1029/2021JB022578.
  • [7] J. Shen, X. Wang, W. Liu, P. Zhang, C. Zhu, and X. Wang, “Experimental study on mesoscopic shear behavior of calcareous sand material with digital imaging approach,” Advances in Civil Engineering, vol. 2020, 2020, doi: 10.1155/2020/8881264.
  • [8] T. Triantafyllidis, L. Röchter, A. Niemunis, and L. F. Prada-Sarmiento, “Shear banding in geomaterials under extensional plane strain conditions: Physical and analytical model,” Acta Geotech, vol. 6, no. 2, pp. 93–103, 2011, doi: 10.1007/s11440-011-0136-5.
  • [9] R. Khan and G. M. Latha, “Multi-scale understanding of sand-geosynthetic interface shear response through Micro-CT and shear band analysis,” Geotextiles and Geomembranes, vol. 51, no. 3, pp. 437–453, Sep. 2023, doi: 10.1016/j.geotexmem.2023.01.006.
  • [10] J. Pan et al., “Thickness of the shear band of silty clay–concrete interface based on the particle image velocimetry technique,” Constr Build Mater, vol. 388, Jul. 2023, doi: 10.1016/j.conbuildmat.2023.131712.
  • [11] R. An, X. Zhang, Y. Wang, C. Chen, and X. Chen, “Dynamic Evolution of Cracks in Slag-Modified Soil under Uniaxial Loading Using Real-Time X-Ray Computed Tomography,” Journal of Materials in Civil Engineering, vol. 35, no. 6, Jun. 2023, doi: 10.1061/jmcee7.mteng-14491.
  • [12] R. A. Jewell, “Direct shear tests on sand,” GEOTECHNIQUE, vol. 39, no. 2, pp. 309–322, 1989.
  • [13] P. Vangla and G. M. Latha, “Influence of Particle Size on the Friction and Interfacial Shear Strength of Sands of Similar Morphology,” International Journal of Geosynthetics and Ground Engineering, vol. 1, no. 1, 2015, doi: 10.1007/s40891-014-0008-9.
  • [14] A. D3080, “ASTM D 3080 - 03 Direct Shear Test of Soilds Under Consolidated Drained Conditions,” ASTM International, vol. 04, p. 7, 2003, [Online]. Available: www.astm.org
  • [15] L. K. Park, M. Suneel, and I. J. Chul, “Shear strength of jumunjin sand according to relative density,” Marine Georesources and Geotechnology, vol. 26, no. 2, pp. 101–110, 2008, doi: 10.1080/10641190802022445.
  • [16] A. Lashkari and V. Jamali, “Global and local sand–geosynthetic interface behaviour,” Geotechnique, vol. 71, no. 4, pp. 346–367, 2021, doi: 10.1680/jgeot.19.P.109.
  • [17] J. Lubliner, PLASTICITY THEORY. Pearson Education, Inc., 1990.
  • [18] X. G. Zhao and M. Cai, “A mobilized dilation angle model for rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 47, no. 3, pp. 368–384, 2010, doi: 10.1016/j.ijrmms.2009.12.007.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Tasarım ve Teknoloji
Authors

Doğucan Resuloğulları 0000-0002-7339-4835

Gökhan Altay 0000-0002-1174-545X

Cafer Kayadelen 0000-0003-2955-013X

Early Pub Date March 5, 2024
Publication Date March 25, 2024
Submission Date July 26, 2023
Published in Issue Year 2024

Cite

APA Resuloğulları, D., Altay, G., & Kayadelen, C. (2024). Kohezyonsuz Zeminlerde Kesme Bant Kalınlığı ve Rölatif Sıkılık Arasındaki İlişki. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(1), 157-163. https://doi.org/10.29109/gujsc.1328632

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526