Research Article
BibTex RIS Cite

Farklı Doluluk Oranlarına Sahip PLA Plus Plakaların Sürtünme Karıştırma Kaynağı İle Kaynaklanabilirliğinin İncelenmesi

Year 2024, , 282 - 296, 25.03.2024
https://doi.org/10.29109/gujsc.1399512

Abstract

Plastiklerin birleştirme işlemleri; genellikle kaynak, yapıştırma veya mekanik bağlama elemanları ile gerçekleştirilmesine rağmen, karmaşık ve büyük parçaların üretimi çoğunlukla kaynak teknolojisi gerektirmektedir. Bu çalışmada; 3B basılmış PLA Plus parçaların sürtünme karıştırma kaynağıyla (FSW) birleştirilmesinde, parça doluluk oranlarının (%20, %40, %60, %80 ve %100) kaynak mukavemetine (ultimate tensile stress-UTS) etkisi değerlendirilmiştir. Sürtünme karıştırma kaynağı işlem parametrelerinin (ilerleme hızı: 50 ve 100 mm/min ve dönme hızı: 1000 ve 1500 rpm), sürtünme karıştırma kaynağının yapısı ve mekanik özellikleri üzerindeki etkilerini incelemek için çekme testleri ve sıcaklık ölçümleri gerçekleştirilmiştir. Ayrıca kaynak bölgesindeki kusurları tespit etmek için görsel incelemeler yapılmıştır. Doluluk oranlarına göre referans olarak verilen PLA Plus numunelerine kıyasla en yüksek kaynak mukavemetleri sırasıyla %80, %60 ve %100 doluluk oranında (sırasıyla 29.4 MPa, 17.47 MPa ve 41.12 MPa ve %112.38 %97.48, %87.04 verimlilik) elde edilmiştir. Sonuç olarak düşük doluluk oranlarında (%20 ve %40) kaynak kalitesinin olumsuz etkilendiği ve kaynak bölgesinde surface tunnel kusurunun oluştuğu belirlenmiştir. FSW’de kaynak kalitesinin işlem sırasında ortaya çıkan sıcaklıktan önemli derecede etkilendiği belirlenmiştir. Yapılan çalışma, özellikle 3B yazıcıda farklı doluluk oranlarında basılan parçaların sürtünme karıştırma kaynağıyla birleştirilebilir olduğunu ve doluluk oranlarının optimizasyonu ile kaynak işleminin verimliliğinin artırılabileceğini göstermektedir.

References

  • [1] Javadi MS, Ehteshamfar MV, Adibi H. A comprehensive analysis and prediction of the effect of groove shape and volume fraction of multi-walled carbon nanotubes on the polymer 3D-printed parts in the friction stir welding process. Polymer Testing, 2023;117: 107844.
  • [2] Singh S, Prakash C, Gupta MK. On friction-stir welding of 3D printed thermoplastics, in Materials forming, machining and post processing. Springer, 75-91; 2019.
  • [3] Petousis M, Mountakis N, Vidakis N. Optimization of hybrid friction stir welding of PMMA: 3D-printed parts and conventional sheets welding efficiency in single-and two-axis welding traces. The International Journal of Advanced Manufacturing Technology. 2023;127: 2401-2423.
  • [4] Afshari M, Hardani H, Hamounpeyma M, Samadi MR. Friction stir welding of polypropylene based graphene nanocomposites fabricated with 3-D printing: An investigation on the microstructure and mechanical properties. Journal of Composite Materials. 2023; 57: 1523-1538.
  • [5] Azhiri RB, Tekiyeh RM, Zeynali E, Ahmadnia M, Javidpour F. Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition. Measurement. 2018; 127: 198-204.
  • [6] Forcellese A, Mancia T, Pieralisi M. Vita, A. Friction stir welding of additively manufactured blanks in thermoplastic polymer. Procedia CIRP. 2022; 112: 448-453.
  • [7] Anaç N. The mechanical properties of dissimilar/similar polymer materials joined by friction stir welding. Heliyon. 2023; 9: e17627.
  • [8] Tiwary VK, Ravi NJ, Arunkumar P, Shivakumar S, Deshpande AS, Malik VR. Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020; 234: 4857-4871.
  • [9] Sharma AKR, Roy Choudhury M, Debnath K. Experimental investigation of friction stir welding of PLA. Welding in the World. 2020; 64: 1011-1021.
  • [10] Senthil S, Kumar MB. Effect of tool rotational speed and traverse speed on friction stir welding of 3d-printed polylactic acid material. Applied Science and Engineering Progress. 2022; 15: 1-9.
  • [11] Kumar R, Singh R, Ahuja I. Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt flow compatible dissimilar thermoplastics. Journal of Manufacturing Processes. 2019; 38: 387-395.
  • [12] İpekçi A, Kam M, Saruhan H. Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products. Journal of New Results in Science. 2018; 7: 1-8.
  • [13] Incorporated. P.S. 3 Types of Plastic Used in 3D Printing, https://www.polymersolutions.com/blog/plastic-in-3d-printing/.
  • [14] Kyutoku H, Maeda N, Sakamoto H, Nishimura H, Yamada K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydrate polymers. 2019; 203: 95-102.
  • [15] Karakuş S. Design And Manufacturing Of A Two-Stage Reduction Gearbox With 3d Printers. International Journal of 3D Printing Technologies and Digital Industry. 2023; 7: 18-28.
  • [16] Singh J., Singh, S., Dhawan, V., Mechanical and biodegradation behaviour of jute/polylactic acid green composites. Asian Journal of Engineering and Applied Technology. 2018; 7: 52-57.
  • [17] Ultimaker. Ultimaker PLA TDS, https: //support.makerbot.com/s/article/1667410781972.
  • [18] eSUN. PLA+, https://www.esun3d.com /uploads/eSUN_PLA+-Filament_TDS_V4.0. pdf.
  • [19] Günay M, Gündüz S, Yılmaz H, Yaşar N, Kaçar R. PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu. Politeknik Dergisi. 2020; 23: 73-79.
  • [20] Bilgin M. Abs Esasli Numunelerin 3d Yazici İle Üretilmesinde İşlem Parametrelerinin Optimizasyonu. International Journal of 3D Printing Technologies and Digital Industry. 2022; 6: 236-249.
  • [21] Devuri V, Mahapatra MM, Harsha SP, Mandal NR. Effect of shoulder surface dimension and geometries on FSW of AA7039. Journal for Manufacturing Science and Production. 2014; 14: 183-194.
  • [22] Sun T, Reynolds AP, Roy MJ, Withers PJ, Prangnell PB. The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds. Materials Science and Engineering: A. 2018; 735: 218-227.
  • [23] Hou W, Ding Y, Huang G, Huda N, Shah LHA, Piao Z, Shen Y, Shen Z, Gerlich A. The role of pin eccentricity in friction stir welding of Al-Mg-Si alloy sheets: microstructural evolution and mechanical properties. The International Journal of Advanced Manufacturing Technology. 2022; 121: 7661-7675.
  • [24] Sharma N, Siddiquee AN, Khan ZA, Mohammed MT. Material stirring during FSW of Al–Cu: Effect of pin profile. Materials and Manufacturing Processes. 2018; 33:786-794.
  • [25] Kumar PS, Chander MS. Effect of tool pin geometry on FSW dissimilar aluminum alloys-(AA5083 & AA6061). Materials Today: Proceedings. 2021; 39: 472-477.
  • [26] Darmadi DB, Talice M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry. Engineering Science and Technology, an International Journal. 2021; 24: 637-647.
  • [27] Hynes NRJ, Velu PS. Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. Journal of manufacturing processes. 2018; 32: 288-297.
  • [28] Lombard H, Hattingh DG, Steuwer, A, James MN. Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Materials Science and Engineering: A. 2009; 501: 119-124.
  • [29] Rajakumar S, Muralidharan C, Balasubramanian V, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Materials & Design. 2011; 32: 535-549.
  • [30] Arici A, Selale S. Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Science and technology of welding and joining. 2007; 12: 536-539.
  • [31] Hovanski Y, Upadhyay P, Carsley J, Luzanski T, Carlson B, Eisenmenger M, Soulami D, Marshall D, Landino B, Hartfield-Wunsch S. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks. Jom. 2015; 67: 1045-1053.
  • [32] Bhardwaj N, Narayanan RG, Dixit US, Hashmi MSJ. Recent developments in friction stir welding and resulting industrial practices. Advances in Materials and Processing Technologies. 2019; 5: 461-496.
  • [33] Zhang Y, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly. 2012; 51: 250-261.
  • [34] Evlen H, Özdemir MA, Çalişkan A. Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri. Politeknik Dergisi. 2019; 22: 1031-1037.
  • [35] Vijendra B, Sharma A. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. Journal of Manufacturing Processes. 2015; 20: 234-244.
  • [36] Bilgin M, Karabulut Ş, Özdemir A. Alüminyum Magnezyum Alaşımlarının Sürtünme Karıştırma Kaynağı İle Kaynak Edilebilirliğinin Değerlendirilmesi. Gazi University Journal of Science Part C: Design and Technology. 2017; 5: 191-209.

Investigation of The Weldability of PLA Plus Sheets with Different Infill Ratios by Friction Stir Welding

Year 2024, , 282 - 296, 25.03.2024
https://doi.org/10.29109/gujsc.1399512

Abstract

Although the joining processes of plastics are typically carried out through welding, adhesive bonding, or mechanical fastening elements, the production of complex and large parts often requires welding technology. In this study, the effect of part infill ratio (20%, 40%, 60%, 80%, and 100%) on the welding strength of 3D printed PLA Plus parts was evaluated through friction stir welding (FSW). Tensile tests and temperature measurements were carried out to examine the effects of friction stir welding process parameters (feed rate: 50 and 100 mm/min and rotational speed: 1000 and 1500 rpm) on the structure and mechanical properties of friction stir welding. Moreover, visual inspections were performed to detect defects in the weld zone. Compared to the PLA Plus samples given as reference according to the infill ratios, the highest welding strengths were obtained at 80%, 60% and 100% infill ratios (29.4 MPa, 17.47 MPa and 41.12 MPa and 112.38%, 97.48%, 87.04% efficiency, respectively). As a result, it was determined that at low infill ratios (20% and 40%), the weld quality was negatively affected, and a surface tunnel defect occurred in the weld zone. It has been determined that the weld quality in FSW is significantly affected by the temperature occurring during the process. The study has shown that parts printed at different infill ratios, especially on a 3D printer, can be combined with friction stir welding and that the efficiency of the welding process can be increased by optimizing the infill ratios.

References

  • [1] Javadi MS, Ehteshamfar MV, Adibi H. A comprehensive analysis and prediction of the effect of groove shape and volume fraction of multi-walled carbon nanotubes on the polymer 3D-printed parts in the friction stir welding process. Polymer Testing, 2023;117: 107844.
  • [2] Singh S, Prakash C, Gupta MK. On friction-stir welding of 3D printed thermoplastics, in Materials forming, machining and post processing. Springer, 75-91; 2019.
  • [3] Petousis M, Mountakis N, Vidakis N. Optimization of hybrid friction stir welding of PMMA: 3D-printed parts and conventional sheets welding efficiency in single-and two-axis welding traces. The International Journal of Advanced Manufacturing Technology. 2023;127: 2401-2423.
  • [4] Afshari M, Hardani H, Hamounpeyma M, Samadi MR. Friction stir welding of polypropylene based graphene nanocomposites fabricated with 3-D printing: An investigation on the microstructure and mechanical properties. Journal of Composite Materials. 2023; 57: 1523-1538.
  • [5] Azhiri RB, Tekiyeh RM, Zeynali E, Ahmadnia M, Javidpour F. Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition. Measurement. 2018; 127: 198-204.
  • [6] Forcellese A, Mancia T, Pieralisi M. Vita, A. Friction stir welding of additively manufactured blanks in thermoplastic polymer. Procedia CIRP. 2022; 112: 448-453.
  • [7] Anaç N. The mechanical properties of dissimilar/similar polymer materials joined by friction stir welding. Heliyon. 2023; 9: e17627.
  • [8] Tiwary VK, Ravi NJ, Arunkumar P, Shivakumar S, Deshpande AS, Malik VR. Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020; 234: 4857-4871.
  • [9] Sharma AKR, Roy Choudhury M, Debnath K. Experimental investigation of friction stir welding of PLA. Welding in the World. 2020; 64: 1011-1021.
  • [10] Senthil S, Kumar MB. Effect of tool rotational speed and traverse speed on friction stir welding of 3d-printed polylactic acid material. Applied Science and Engineering Progress. 2022; 15: 1-9.
  • [11] Kumar R, Singh R, Ahuja I. Mechanical, thermal and micrographic investigations of friction stir welded: 3D printed melt flow compatible dissimilar thermoplastics. Journal of Manufacturing Processes. 2019; 38: 387-395.
  • [12] İpekçi A, Kam M, Saruhan H. Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products. Journal of New Results in Science. 2018; 7: 1-8.
  • [13] Incorporated. P.S. 3 Types of Plastic Used in 3D Printing, https://www.polymersolutions.com/blog/plastic-in-3d-printing/.
  • [14] Kyutoku H, Maeda N, Sakamoto H, Nishimura H, Yamada K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydrate polymers. 2019; 203: 95-102.
  • [15] Karakuş S. Design And Manufacturing Of A Two-Stage Reduction Gearbox With 3d Printers. International Journal of 3D Printing Technologies and Digital Industry. 2023; 7: 18-28.
  • [16] Singh J., Singh, S., Dhawan, V., Mechanical and biodegradation behaviour of jute/polylactic acid green composites. Asian Journal of Engineering and Applied Technology. 2018; 7: 52-57.
  • [17] Ultimaker. Ultimaker PLA TDS, https: //support.makerbot.com/s/article/1667410781972.
  • [18] eSUN. PLA+, https://www.esun3d.com /uploads/eSUN_PLA+-Filament_TDS_V4.0. pdf.
  • [19] Günay M, Gündüz S, Yılmaz H, Yaşar N, Kaçar R. PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu. Politeknik Dergisi. 2020; 23: 73-79.
  • [20] Bilgin M. Abs Esasli Numunelerin 3d Yazici İle Üretilmesinde İşlem Parametrelerinin Optimizasyonu. International Journal of 3D Printing Technologies and Digital Industry. 2022; 6: 236-249.
  • [21] Devuri V, Mahapatra MM, Harsha SP, Mandal NR. Effect of shoulder surface dimension and geometries on FSW of AA7039. Journal for Manufacturing Science and Production. 2014; 14: 183-194.
  • [22] Sun T, Reynolds AP, Roy MJ, Withers PJ, Prangnell PB. The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds. Materials Science and Engineering: A. 2018; 735: 218-227.
  • [23] Hou W, Ding Y, Huang G, Huda N, Shah LHA, Piao Z, Shen Y, Shen Z, Gerlich A. The role of pin eccentricity in friction stir welding of Al-Mg-Si alloy sheets: microstructural evolution and mechanical properties. The International Journal of Advanced Manufacturing Technology. 2022; 121: 7661-7675.
  • [24] Sharma N, Siddiquee AN, Khan ZA, Mohammed MT. Material stirring during FSW of Al–Cu: Effect of pin profile. Materials and Manufacturing Processes. 2018; 33:786-794.
  • [25] Kumar PS, Chander MS. Effect of tool pin geometry on FSW dissimilar aluminum alloys-(AA5083 & AA6061). Materials Today: Proceedings. 2021; 39: 472-477.
  • [26] Darmadi DB, Talice M. Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry. Engineering Science and Technology, an International Journal. 2021; 24: 637-647.
  • [27] Hynes NRJ, Velu PS. Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. Journal of manufacturing processes. 2018; 32: 288-297.
  • [28] Lombard H, Hattingh DG, Steuwer, A, James MN. Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Materials Science and Engineering: A. 2009; 501: 119-124.
  • [29] Rajakumar S, Muralidharan C, Balasubramanian V, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Materials & Design. 2011; 32: 535-549.
  • [30] Arici A, Selale S. Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Science and technology of welding and joining. 2007; 12: 536-539.
  • [31] Hovanski Y, Upadhyay P, Carsley J, Luzanski T, Carlson B, Eisenmenger M, Soulami D, Marshall D, Landino B, Hartfield-Wunsch S. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks. Jom. 2015; 67: 1045-1053.
  • [32] Bhardwaj N, Narayanan RG, Dixit US, Hashmi MSJ. Recent developments in friction stir welding and resulting industrial practices. Advances in Materials and Processing Technologies. 2019; 5: 461-496.
  • [33] Zhang Y, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly. 2012; 51: 250-261.
  • [34] Evlen H, Özdemir MA, Çalişkan A. Doluluk oranlarının PLA ve PET malzemelerin mekanik özellikleri üzerine etkileri. Politeknik Dergisi. 2019; 22: 1031-1037.
  • [35] Vijendra B, Sharma A. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. Journal of Manufacturing Processes. 2015; 20: 234-244.
  • [36] Bilgin M, Karabulut Ş, Özdemir A. Alüminyum Magnezyum Alaşımlarının Sürtünme Karıştırma Kaynağı İle Kaynak Edilebilirliğinin Değerlendirilmesi. Gazi University Journal of Science Part C: Design and Technology. 2017; 5: 191-209.
There are 36 citations in total.

Details

Primary Language English
Subjects Resource Technologies
Journal Section Tasarım ve Teknoloji
Authors

Nergizhan Anaç 0000-0001-6738-9741

Oğuz Koçar 0000-0002-1928-4301

Cihan Altuok 0000-0002-3583-086X

Early Pub Date March 16, 2024
Publication Date March 25, 2024
Submission Date December 3, 2023
Acceptance Date February 20, 2024
Published in Issue Year 2024

Cite

APA Anaç, N., Koçar, O., & Altuok, C. (2024). Investigation of The Weldability of PLA Plus Sheets with Different Infill Ratios by Friction Stir Welding. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(1), 282-296. https://doi.org/10.29109/gujsc.1399512

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526