Review
BibTex RIS Cite
Year 2024, , 684 - 701, 30.09.2024
https://doi.org/10.29109/gujsc.1524018

Abstract

References

  • [1] J. B. Guinée and R. Heijungs, “Life Cycle Sustainability Analysis: Framing Questions to Approaches,” J. Ind. Ecol., vol. 15, no. 5, pp. 656–658, Oct. 2011, doi: https://doi.org/10.1111/j.1530-9290.2011.00398.x.
  • [2] T. E. Swarr et al., “Environmental life-cycle costing: A code of practice,” International Journal of Life Cycle Assessment, vol. 16, no. 5. 2011, doi: 10.1007/s11367-011-0287-5.
  • [3] M. Finkbeiner, E. M. Schau, A. Lehmann, and M. Traverso, “Towards Life Cycle Sustainability Assessment,” Sustainability, vol. 2, no. 10. pp. 3309–3322, 2010, doi: 10.3390/su2103309.
  • [4] A. Zamagni, H. L. Pesonen, and T. Swarr, “From LCA to Life Cycle Sustainability Assessment: Concept, practice and future directions,” Int. J. Life Cycle Assess., vol. 18, no. 9, 2013, doi: 10.1007/s11367-013-0648-3.
  • [5] United Nations, “Transforming Our World: the 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: the 2030 Agenda for Sustainable Development,” United Nations, 2015.
  • [6] J. Ottman, The New Rules of Green Marketing: Strategies, Tools, and Inspiration for Sustainable Branding, 1st Editio. London: Berrett-Koehler Publishers, 2011.
  • [7] EMF, “Towards the Circular Economy: Vol. 1: Economic and business rationale for an accelerated transition,” Ellen MacArthur Found., vol. 1, 2014.
  • [8] M. Charter and U. Tischner, Sustainable solutions: Developing products and services for the future. 2017.
  • [9] T. E. Graedel and B. R. Allenby, “Industrial Ecology and Sustainable Engineering,” Pearson Educ. Inc., 2010.
  • [10] M. E. Porter and C. Van Der Linde, “Toward a New Conception of the Environment-Competitiveness Relationship The Link from Regulation to Promoting Innovation,” J. Econ. Perspect., vol. 9, no. 4—Fall, 1995.
  • [11] S. L. Hart, M. B. Milstein, and J. Caggiano, “Creating sustainable value,” Academy of Management Executive, vol. 17, no. 2. 2003, doi: 10.5465/ame.2003.10025194.
  • [12] E. Manzini and C. Vezzoli, “Product-Service Systems and Sustainability: Opportunities for Sustainable Solutions,” 2003.
  • [13] E. Vázquez-López, J. Solís-Guzmán, and M. Marrero, “A Work Breakdown Structure for Estimating Building Life Cycle Cost Aligned with Sustainable Assessment—Application to Functional Costs,” Buildings, vol. 14, p. 1119, Apr. 2024, doi: 10.3390/buildings14041119.
  • [14] Z. Ullah, A. R. Nasir, F. K. Alqahtani, F. Ullah, M. J. Thaheem, and A. Maqsoom, “Life Cycle Sustainability Assessment of Healthcare Buildings: A Policy Framework,” Buildings, vol. 13, no. 9, 2023, doi: 10.3390/buildings13092143.
  • [15] C. LLatas, B. Soust-Verdaguer, A. Hollberg, E. Palumbo, and R. Quiñones, “BIM-based LCSA application in early design stages using IFC,” Autom. Constr., vol. 138, p. 104259, Jun. 2022, doi: 10.1016/J.AUTCON.2022.104259.
  • [16] F. Shadram and J. Mukkavaara, “Improving Life Cycle Sustainability and Profitability of Buildings through Optimization: A Case Study,” Buildings, vol. 12, no. 4, Apr. 2022, doi: 10.3390/BUILDINGS12040497.
  • [17] M. V. A. P. M. Filho, B. B. F. da Costa, M. Najjar, K. V. Figueiredo, M. B. de Mendonça, and A. N. Haddad, “Sustainability Assessment of a Low-income Building: A BIM-LCSA-FAHP-based Analysis,” Buildings, vol. 12, no. 2, 2022, doi: 10.3390/buildings12020181.
  • [18] T. Jena and S. Kaewunruen, “Life cycle sustainability assessments of an innovative frp composite footbridge,” Sustain., vol. 13, no. 23, 2021, doi: 10.3390/su132313000.
  • [19] B. Soust-Verdaguer, I. Bernardino Galeana, C. Llatas, M. V. Montes, E. Hoxha, and A. Passer, “How to conduct consistent environmental, economic, and social assessment during the building design process. A BIM-based Life Cycle Sustainability Assessment method,” J. Build. Eng., vol. 45, 2022, doi: 10.1016/j.jobe.2021.103516.
  • [20] O. O. Tokede, A. Roetzel, and G. Ruge, “A holistic life cycle sustainability evaluation of a building project,” Sustain. Cities Soc., vol. 73, 2021, doi: 10.1016/j.scs.2021.103107.
  • [21] S. Y. Janjua, P. K. Sarker, and W. K. Biswas, “Sustainability implications of service life on residential buildings – An application of life cycle sustainability assessment framework,” Environ. Sustain. Indic., vol. 10, 2021, doi: 10.1016/j.indic.2021.100109.
  • [22] K. Ek, A. Mathern, R. Rempling, P. Brinkhoff, M. Karlsson, and M. Norin, “Life cycle sustainability performance assessment method for comparison of civil engineering works design concepts: Case study of a bridge,” Int. J. Environ. Res. Public Health, vol. 17, no. 21, 2020, doi: 10.3390/ijerph17217909.
  • [23] I. J. Navarro, V. Penadés-Plà, D. Martínez-Muñoz, R. Rempling, and V. Yepes, “Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review,” Journal of Civil Engineering and Management, vol. 26, no. 7. 2020, doi: 10.3846/jcem.2020.13599.
  • [24] J. E. Padgett and N. Vishnu, “Interaction of life-cycle phases in a probabilistic life-cycle framework for civil infrastructure system sustainability,” Sustain. Resilient Infrastruct., vol. 5, no. 5, 2020, doi: 10.1080/23789689.2019.1574514.
  • [25] C. J. Milani and M. Kripka, “Evaluation of short span bridge projects with a focus on sustainability,” Struct. Infrastruct. Eng., vol. 16, no. 2, 2020, doi: 10.1080/15732479.2019.1662815.
  • [26] S. Liu and S. Qian, “Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods,” Sustain. Dev., vol. 27, no. 5, 2019, doi: 10.1002/sd.1946.
  • [27] Y. Ostermeyer, H. Wallbaum, and F. Reuter, “Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment,” Int. J. Life Cycle Assess., vol. 18, no. 9, 2013, doi: 10.1007/s11367-013-0548-6.
  • [28] G. Gonzales-Calienes, M. Kannangara, and F. Bensebaa, “Economic and Environmental Viability of Lithium-Ion Battery Recycling—Case Study in Two Canadian Regions with Different Energy Mixes,” Batteries, vol. 9, no. 7, 2023, doi: 10.3390/batteries9070375.
  • [29] H. Amini Toosi, M. Lavagna, F. Leonforte, C. Del Pero, and N. Aste, “A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems,” Build. Environ., vol. 209, 2022, doi: 10.1016/j.buildenv.2021.108656.
  • [30] R. J. Bonilla-Alicea and K. Fu, “Social life-cycle assessment (S-LCA) of residential rooftop solar panels using challenge-derived framework,” Energy. Sustain. Soc., vol. 12, no. 1, 2022, doi: 10.1186/s13705-022-00332-w.
  • [31] J. Santillán-Saldivar et al., “Design of an endpoint indicator for mineral resource supply risks in life cycle sustainability assessment: The case of Li-ion batteries,” J. Ind. Ecol., vol. 25, no. 4, 2021, doi: 10.1111/jiec.13094.
  • [32] F. Guarino, M. Cellura, and M. Traverso, “Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler,” Int. J. Life Cycle Assess., vol. 25, no. 10, 2020, doi: 10.1007/s11367-020-01779-9.
  • [33] S. Moslehi and T. A. Reddy, “A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems,” Appl. Energy, vol. 239, 2019, doi: 10.1016/j.apenergy.2019.01.237.
  • [34] N. Mahbub, A. O. Oyedun, H. Zhang, A. Kumar, and W. R. Poganietz, “A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass,” Int. J. Life Cycle Assess., vol. 24, no. 5, 2019, doi: 10.1007/s11367-018-1529-6.
  • [35] M. Z. Akber, M. J. Thaheem, and H. Arshad, “Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix,” Energy Policy, vol. 111, 2017, doi: 10.1016/j.enpol.2017.09.022.
  • [36] B. Atilgan and A. Azapagic, “An integrated life cycle sustainability assessment of electricity generation in Turkey,” Energy Policy, vol. 93, 2016, doi: 10.1016/j.enpol.2016.02.055.
  • [37] N. C. Onat, S. Gumus, M. Kucukvar, and O. Tatari, “Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies,” Sustain. Prod. Consum., vol. 6, 2016, doi: 10.1016/j.spc.2015.12.003.
  • [38] L. Stamford and A. Azapagic, “Life cycle sustainability assessment of electricity options for the UK,” Int. J. Energy Res., vol. 36, no. 14, 2012, doi: 10.1002/er.2962.
  • [39] C. Nzila, J. Dewulf, H. Spanjers, D. Tuigong, H. Kiriamiti, and H. van Langenhove, “Multi criteria sustainability assessment of biogas production in Kenya,” Appl. Energy, vol. 93, 2012, doi: 10.1016/j.apenergy.2011.12.020.
  • [40] M. Traverso, F. Asdrubali, A. Francia, and M. Finkbeiner, “Towards life cycle sustainability assessment: An implementation to photovoltaic modules,” Int. J. Life Cycle Assess., vol. 17, no. 8, 2012, doi: 10.1007/s11367-012-0433-8.
  • [41] E. M. Schau, M. Traverso, A. Lehmannann, and M. Finkbeiner, “Life cycle costing in sustainability assessment-A case study of remanufactured alternators,” Sustainability, vol. 3, no. 11, 2011, doi: 10.3390/su3112268.
  • [42] Z. Zhou, H. Jiang, and L. Qin, “Life cycle sustainability assessment of fuels,” Fuel, vol. 86, no. 1–2, 2007, doi: 10.1016/j.fuel.2006.06.004.
  • [43] M. Mori et al., “Life cycle sustainability assessment of a proton exchange membrane fuel cell technology for ecodesign purposes,” Int. J. Hydrogen Energy, vol. 48, no. 99, 2023, doi: 10.1016/j.ijhydene.2023.05.255.
  • [44] P. Gosalvitr, R. M. Cuéllar-Franca, R. Smith, and A. Azapagic, “Integrating process modelling and sustainability assessment to improve the environmental and economic sustainability in the cheese industry,” Sustain. Prod. Consum., vol. 28, 2021, doi: 10.1016/j.spc.2021.07.022.
  • [45] P. Pradhan, P. Karan, and R. Chakraborty, “Life cycle sustainability assessment of optimized biodiesel production from used rice bran oil employing waste derived-hydroxyapatite supported vanadium catalyst,” Environ. Sci. Pollut. Res., vol. 29, no. 14, 2022, doi: 10.1007/s11356-021-16482-x.
  • [46] N. Samaroo, N. Koylass, M. Guo, and K. Ward, “Achieving absolute sustainability across integrated industrial networks-a case study on the ammonia process,” Green Chem., vol. 22, no. 19, 2020, doi: 10.1039/d0gc02520h.
  • [47] X. Zhang, L. Zhang, K. Y. Fung, B. R. Bakshi, and K. M. Ng, “Sustainable product design: A life-cycle approach,” Chem. Eng. Sci., vol. 217, 2020, doi: 10.1016/j.ces.2020.115508.
  • [48] J. M. Aberilla, A. Gallego-Schmid, L. Stamford, and A. Azapagic, “An integrated sustainability assessment of synergistic supply of energy and water in remote communities,” Sustain. Prod. Consum., vol. 22, 2020, doi: 10.1016/j.spc.2020.01.003.
  • [49] M. Nieder-Heitmann, K. F. Haigh, and J. F. Görgens, “Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: Finding a sustainable solution for the South African sugar industry,” J. Clean. Prod., vol. 239, 2019, doi: 10.1016/j.jclepro.2019.118039.
  • [50] Á. Botos, J. D. Graham, and Z. Illés, “Industrial chemical regulation in the European Union and the United States: a comparison of REACH and the amended TSCA#,” J. Risk Res., vol. 22, no. 10, 2019, doi: 10.1080/13669877.2018.1454495.
  • [51] E. Ekener, J. Hansson, A. Larsson, and P. Peck, “Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels,” J. Clean. Prod., vol. 181, 2018, doi: 10.1016/j.jclepro.2018.01.211.
  • [52] T. A. Nguyen, Y. Maeda, K. Kuroda, and K. Otsuka, “Inclusive impact assessment for the sustainability of vegetable oil-based biodiesel - Part II: Sustainability assessment of inedible vegetable oil-based biodiesel in Ha Long Bay, Vietnam,” J. Clean. Prod., vol. 168, 2017, doi: 10.1016/j.jclepro.2017.08.238.
  • [53] C. Wulf, P. Zapp, A. Schreiber, J. Marx, and H. Schlör, “Lessons Learned from a Life Cycle Sustainability Assessment of Rare Earth Permanent Magnets,” J. Ind. Ecol., vol. 21, no. 6, 2017, doi: 10.1111/jiec.12575.
  • [54] M. Kucukvar, M. Noori, G. Egilmez, and O. Tatari, “Stochastic decision modeling for sustainable pavement designs,” Int. J. Life Cycle Assess., vol. 19, no. 6, 2014, doi: 10.1007/s11367-014-0723-4.
  • [55] L. Schneider et al., “The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment,” Int. J. Life Cycle Assess., vol. 19, no. 3, 2014, doi: 10.1007/s11367-013-0666-1.
  • [56] M. Kucukvar, S. Gumus, G. Egilmez, and O. Tatari, “Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method,” Autom. Constr., vol. 40, 2014, doi: 10.1016/j.autcon.2013.12.009.
  • [57] Y. Song et al., “Comparative life-cycle sustainability assessment of centralized and decentralized remediation strategies at the city level,” Sci. Total Environ., vol. 919, 2024, doi: 10.1016/j.scitotenv.2024.170908.
  • [58] T. Opher, E. Friedler, and A. Shapira, “Comparative life cycle sustainability assessment of urban water reuse at various centralization scales,” Int. J. Life Cycle Assess., vol. 24, no. 7, 2019, doi: 10.1007/s11367-018-1469-1.
  • [59] K. R. Reddy, J. K. Chetri, and K. Kiser, “Quantitative sustainability assessment of various remediation alternatives for contaminated lake sediments: Case study,” Sustain. (United States), vol. 11, no. 6, 2018, doi: 10.1089/sus.2018.0021.
  • [60] J. Wang, S. D. Maier, R. Horn, R. Holländer, and R. Aschemann, “Development of an ex-ante sustainability assessment methodology for municipal solid waste management innovations,” Sustain., vol. 10, no. 9, 2018, doi: 10.3390/su10093208.
  • [61] W. I. Sou, A. Chu, and P. T. Chiueh, “Sustainability assessment and prioritisation of bottom ash management in Macao,” Waste Manag. Res., vol. 34, no. 12, 2016, doi: 10.1177/0734242X16665914.
  • [62] P. P. Kalbar, S. Karmakar, and S. R. Asolekar, “Life cycle-based decision support tool for selection of wastewater treatment alternatives,” J. Clean. Prod., vol. 117, 2016, doi: 10.1016/j.jclepro.2016.01.036.
  • [63] R. K. Foolmaun and T. Ramjeawon, “Life cycle sustainability assessments (LCSA) of four disposal scenarios for used polyethylene terephthalate (PET) bottles in Mauritius,” Environ. Dev. Sustain., vol. 15, no. 3, 2013, doi: 10.1007/s10668-012-9406-0.
  • [64] N. R. Khalili, D. Ehrlich, and K. Dia-Eddine, “A qualitative multi-criteria, multi stakeholder decision making tool for sustainable waste management,” Prog. Ind. Ecol., vol. 8, no. 1–2, 2013, doi: 10.1504/PIE.2013.055063.
  • [65] J. Ren and S. Toniolo, “Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach,” J. Clean. Prod., vol. 175, 2018, doi: 10.1016/j.jclepro.2017.12.070.
  • [66] C. Helbig et al., “Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers,” J. Clean. Prod., vol. 137, 2016, doi: 10.1016/j.jclepro.2016.07.214.
  • [67] J. Ren, A. Manzardo, A. Mazzi, F. Zuliani, and A. Scipioni, “Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making,” Int. J. Life Cycle Assess., vol. 20, no. 6, 2015, doi: 10.1007/s11367-015-0877-8.
  • [68] A. Cimprich et al., “Extension of geopolitical supply risk methodology: Characterization model applied to conventional and electric vehicles,” J. Clean. Prod., vol. 162, 2017, doi: 10.1016/j.jclepro.2017.06.063.
  • [69] E. D. Gemechu, G. Sonnemann, and S. B. Young, “Geopolitical-related supply risk assessment as a complement to environmental impact assessment: the case of electric vehicles,” Int. J. Life Cycle Assess., vol. 22, no. 1, 2017, doi: 10.1007/s11367-015-0917-4.
  • [70] N. C. Onat, M. Kucukvar, O. Tatari, and Q. P. Zheng, “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” J. Clean. Prod., vol. 112, 2016, doi: 10.1016/j.jclepro.2015.09.021.
  • [71] A. I. De Luca, G. Falcone, T. Stillitano, N. Iofrida, A. Strano, and G. Gulisano, “Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy,” J. Clean. Prod., vol. 171, 2018, doi: 10.1016/j.jclepro.2017.10.119.
  • [72] R. B. Zortea, V. G. Maciel, and A. Passuello, “Sustainability assessment of soybean production in Southern Brazil: A life cycle approach,” Sustain. Prod. Consum., vol. 13, 2018, doi: 10.1016/j.spc.2017.11.002.
  • [73] R. Aziz, P. Chevakidagarn, and S. Danteravanich, “Life cycle sustainability assessment of community composting of agricultural and agro industrial wastes,” J. Sustain. Sci. Manag., vol. 11, no. 2, 2016.
  • [74] W. C. Lam, S. de Regel, K. Peeters, and C. Spirinckx, “Applying life cycle sustainability assessment to maximise the innovation potential of new technologies for critical components in wind turbines,” in Journal of Physics: Conference Series, 2021, vol. 2042, no. 1, doi: 10.1088/1742-6596/2042/1/012103.
  • [75] L. Zanchi, M. Delogu, C. A. Dattilo, A. Zamagni, and F. Del Pero, “Integrating Life Cycle Sustainability Assessment Results Using Fuzzy-TOPSIS in Automotive Lightweighting,” SAE Int. J. Mater. Manuf., vol. 14, no. 3, 2021, doi: 10.4271/05-14-03-0022.
  • [76] I. Ribeiro et al., “Framework for life cycle sustainability assessment of additive manufacturing,” Sustain., vol. 12, no. 3, 2020, doi: 10.3390/su12030929.
  • [77] C. Feng and S. Huang, “The analysis of key technologies for sustainable machine tools design,” Applied Sciences (Switzerland), vol. 10, no. 3. 2020, doi: 10.3390/app10030731.
  • [78] A. Biedermann, N. M. López, J. L. S. Sáenz, and J. I. V. Martín, “Sustainability improvement in complex systems composed of products and services,” Int. J. Life Cycle Assess., vol. 27, no. 1, 2022, doi: 10.1007/s11367-021-02014-9.
  • [79] N. M. López, J. L. S. Sáenz, A. Biedermann, and A. S. Tierz, “Sustainability assessment of product-service systems using flows between systems approach,” Sustain., vol. 12, no. 8, 2020, doi: 10.3390/SU12083415.
  • [80] A. J. Raymond, J. T. DeJong, A. Kendall, J. T. Blackburn, and R. Deschamps, “Life Cycle Sustainability Assessment of Geotechnical Ground Improvement Methods,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 12, 2021, doi: 10.1061/(asce)gt.1943-5606.0002646.
  • [81] A. Cimprich, K. S. Karim, and S. B. Young, “Extending the geopolitical supply risk method: material ‘substitutability’ indicators applied to electric vehicles and dental X-ray equipment,” Int. J. Life Cycle Assess., vol. 23, no. 10, 2018, doi: 10.1007/s11367-017-1418-4.
  • [82] D. Settembre Blundo, F. E. García-Muiña, M. Pini, L. Volpi, C. Siligardi, and A. M. Ferrari, “Sustainability as source of competitive advantages in mature sectors: The case of Ceramic District of Sassuolo (Italy),” Smart Sustain. Built Environ., vol. 8, no. 1, 2019, doi: 10.1108/SASBE-07-2018-0038.
  • [83] S. Akhtar, B. Reza, K. Hewage, A. Shahriar, A. Zargar, and R. Sadiq, “Life cycle sustainability assessment (LCSA) for selection of sewer pipe materials,” Clean Technol. Environ. Policy, vol. 17, no. 4, 2014, doi: 10.1007/s10098-014-0849-x.

Sectorial Investigation of Life Cycle Sustainability Assessment in the Context of Case Studies

Year 2024, , 684 - 701, 30.09.2024
https://doi.org/10.29109/gujsc.1524018

Abstract

The emergence of the concept of sustainability has brought with it the challenge of measuring this concept. Over the years, methods have been developed to assess the environmental impacts of sustainability using Life Cycle Assessment (LCA), evaluate its economic impacts through Life Cycle Costing (LCC), and analyze its social impacts with Social Life Cycle Assessment (S-LCA). Life Cycle Sustainability Assessment (LCSA) aims to obtain more holistic and comprehensive results by considering these three dimensions of sustainability together. This study examines the place of the LCSA approach in the literature and its application in different sectors. Case studies from various sectors and the other methods used in these processes were analyzed. The findings indicate that the construction and energy sectors have the most case studies using the LCSA method, while product design lags behind. Evaluating the sustainability of products before mass production is crucial for sustainable product design. Therefore, increasing the use of LCSA in product design is considered a significant step toward achieving sustainability goals.

References

  • [1] J. B. Guinée and R. Heijungs, “Life Cycle Sustainability Analysis: Framing Questions to Approaches,” J. Ind. Ecol., vol. 15, no. 5, pp. 656–658, Oct. 2011, doi: https://doi.org/10.1111/j.1530-9290.2011.00398.x.
  • [2] T. E. Swarr et al., “Environmental life-cycle costing: A code of practice,” International Journal of Life Cycle Assessment, vol. 16, no. 5. 2011, doi: 10.1007/s11367-011-0287-5.
  • [3] M. Finkbeiner, E. M. Schau, A. Lehmann, and M. Traverso, “Towards Life Cycle Sustainability Assessment,” Sustainability, vol. 2, no. 10. pp. 3309–3322, 2010, doi: 10.3390/su2103309.
  • [4] A. Zamagni, H. L. Pesonen, and T. Swarr, “From LCA to Life Cycle Sustainability Assessment: Concept, practice and future directions,” Int. J. Life Cycle Assess., vol. 18, no. 9, 2013, doi: 10.1007/s11367-013-0648-3.
  • [5] United Nations, “Transforming Our World: the 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: the 2030 Agenda for Sustainable Development,” United Nations, 2015.
  • [6] J. Ottman, The New Rules of Green Marketing: Strategies, Tools, and Inspiration for Sustainable Branding, 1st Editio. London: Berrett-Koehler Publishers, 2011.
  • [7] EMF, “Towards the Circular Economy: Vol. 1: Economic and business rationale for an accelerated transition,” Ellen MacArthur Found., vol. 1, 2014.
  • [8] M. Charter and U. Tischner, Sustainable solutions: Developing products and services for the future. 2017.
  • [9] T. E. Graedel and B. R. Allenby, “Industrial Ecology and Sustainable Engineering,” Pearson Educ. Inc., 2010.
  • [10] M. E. Porter and C. Van Der Linde, “Toward a New Conception of the Environment-Competitiveness Relationship The Link from Regulation to Promoting Innovation,” J. Econ. Perspect., vol. 9, no. 4—Fall, 1995.
  • [11] S. L. Hart, M. B. Milstein, and J. Caggiano, “Creating sustainable value,” Academy of Management Executive, vol. 17, no. 2. 2003, doi: 10.5465/ame.2003.10025194.
  • [12] E. Manzini and C. Vezzoli, “Product-Service Systems and Sustainability: Opportunities for Sustainable Solutions,” 2003.
  • [13] E. Vázquez-López, J. Solís-Guzmán, and M. Marrero, “A Work Breakdown Structure for Estimating Building Life Cycle Cost Aligned with Sustainable Assessment—Application to Functional Costs,” Buildings, vol. 14, p. 1119, Apr. 2024, doi: 10.3390/buildings14041119.
  • [14] Z. Ullah, A. R. Nasir, F. K. Alqahtani, F. Ullah, M. J. Thaheem, and A. Maqsoom, “Life Cycle Sustainability Assessment of Healthcare Buildings: A Policy Framework,” Buildings, vol. 13, no. 9, 2023, doi: 10.3390/buildings13092143.
  • [15] C. LLatas, B. Soust-Verdaguer, A. Hollberg, E. Palumbo, and R. Quiñones, “BIM-based LCSA application in early design stages using IFC,” Autom. Constr., vol. 138, p. 104259, Jun. 2022, doi: 10.1016/J.AUTCON.2022.104259.
  • [16] F. Shadram and J. Mukkavaara, “Improving Life Cycle Sustainability and Profitability of Buildings through Optimization: A Case Study,” Buildings, vol. 12, no. 4, Apr. 2022, doi: 10.3390/BUILDINGS12040497.
  • [17] M. V. A. P. M. Filho, B. B. F. da Costa, M. Najjar, K. V. Figueiredo, M. B. de Mendonça, and A. N. Haddad, “Sustainability Assessment of a Low-income Building: A BIM-LCSA-FAHP-based Analysis,” Buildings, vol. 12, no. 2, 2022, doi: 10.3390/buildings12020181.
  • [18] T. Jena and S. Kaewunruen, “Life cycle sustainability assessments of an innovative frp composite footbridge,” Sustain., vol. 13, no. 23, 2021, doi: 10.3390/su132313000.
  • [19] B. Soust-Verdaguer, I. Bernardino Galeana, C. Llatas, M. V. Montes, E. Hoxha, and A. Passer, “How to conduct consistent environmental, economic, and social assessment during the building design process. A BIM-based Life Cycle Sustainability Assessment method,” J. Build. Eng., vol. 45, 2022, doi: 10.1016/j.jobe.2021.103516.
  • [20] O. O. Tokede, A. Roetzel, and G. Ruge, “A holistic life cycle sustainability evaluation of a building project,” Sustain. Cities Soc., vol. 73, 2021, doi: 10.1016/j.scs.2021.103107.
  • [21] S. Y. Janjua, P. K. Sarker, and W. K. Biswas, “Sustainability implications of service life on residential buildings – An application of life cycle sustainability assessment framework,” Environ. Sustain. Indic., vol. 10, 2021, doi: 10.1016/j.indic.2021.100109.
  • [22] K. Ek, A. Mathern, R. Rempling, P. Brinkhoff, M. Karlsson, and M. Norin, “Life cycle sustainability performance assessment method for comparison of civil engineering works design concepts: Case study of a bridge,” Int. J. Environ. Res. Public Health, vol. 17, no. 21, 2020, doi: 10.3390/ijerph17217909.
  • [23] I. J. Navarro, V. Penadés-Plà, D. Martínez-Muñoz, R. Rempling, and V. Yepes, “Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review,” Journal of Civil Engineering and Management, vol. 26, no. 7. 2020, doi: 10.3846/jcem.2020.13599.
  • [24] J. E. Padgett and N. Vishnu, “Interaction of life-cycle phases in a probabilistic life-cycle framework for civil infrastructure system sustainability,” Sustain. Resilient Infrastruct., vol. 5, no. 5, 2020, doi: 10.1080/23789689.2019.1574514.
  • [25] C. J. Milani and M. Kripka, “Evaluation of short span bridge projects with a focus on sustainability,” Struct. Infrastruct. Eng., vol. 16, no. 2, 2020, doi: 10.1080/15732479.2019.1662815.
  • [26] S. Liu and S. Qian, “Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods,” Sustain. Dev., vol. 27, no. 5, 2019, doi: 10.1002/sd.1946.
  • [27] Y. Ostermeyer, H. Wallbaum, and F. Reuter, “Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment,” Int. J. Life Cycle Assess., vol. 18, no. 9, 2013, doi: 10.1007/s11367-013-0548-6.
  • [28] G. Gonzales-Calienes, M. Kannangara, and F. Bensebaa, “Economic and Environmental Viability of Lithium-Ion Battery Recycling—Case Study in Two Canadian Regions with Different Energy Mixes,” Batteries, vol. 9, no. 7, 2023, doi: 10.3390/batteries9070375.
  • [29] H. Amini Toosi, M. Lavagna, F. Leonforte, C. Del Pero, and N. Aste, “A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems,” Build. Environ., vol. 209, 2022, doi: 10.1016/j.buildenv.2021.108656.
  • [30] R. J. Bonilla-Alicea and K. Fu, “Social life-cycle assessment (S-LCA) of residential rooftop solar panels using challenge-derived framework,” Energy. Sustain. Soc., vol. 12, no. 1, 2022, doi: 10.1186/s13705-022-00332-w.
  • [31] J. Santillán-Saldivar et al., “Design of an endpoint indicator for mineral resource supply risks in life cycle sustainability assessment: The case of Li-ion batteries,” J. Ind. Ecol., vol. 25, no. 4, 2021, doi: 10.1111/jiec.13094.
  • [32] F. Guarino, M. Cellura, and M. Traverso, “Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler,” Int. J. Life Cycle Assess., vol. 25, no. 10, 2020, doi: 10.1007/s11367-020-01779-9.
  • [33] S. Moslehi and T. A. Reddy, “A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems,” Appl. Energy, vol. 239, 2019, doi: 10.1016/j.apenergy.2019.01.237.
  • [34] N. Mahbub, A. O. Oyedun, H. Zhang, A. Kumar, and W. R. Poganietz, “A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass,” Int. J. Life Cycle Assess., vol. 24, no. 5, 2019, doi: 10.1007/s11367-018-1529-6.
  • [35] M. Z. Akber, M. J. Thaheem, and H. Arshad, “Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix,” Energy Policy, vol. 111, 2017, doi: 10.1016/j.enpol.2017.09.022.
  • [36] B. Atilgan and A. Azapagic, “An integrated life cycle sustainability assessment of electricity generation in Turkey,” Energy Policy, vol. 93, 2016, doi: 10.1016/j.enpol.2016.02.055.
  • [37] N. C. Onat, S. Gumus, M. Kucukvar, and O. Tatari, “Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies,” Sustain. Prod. Consum., vol. 6, 2016, doi: 10.1016/j.spc.2015.12.003.
  • [38] L. Stamford and A. Azapagic, “Life cycle sustainability assessment of electricity options for the UK,” Int. J. Energy Res., vol. 36, no. 14, 2012, doi: 10.1002/er.2962.
  • [39] C. Nzila, J. Dewulf, H. Spanjers, D. Tuigong, H. Kiriamiti, and H. van Langenhove, “Multi criteria sustainability assessment of biogas production in Kenya,” Appl. Energy, vol. 93, 2012, doi: 10.1016/j.apenergy.2011.12.020.
  • [40] M. Traverso, F. Asdrubali, A. Francia, and M. Finkbeiner, “Towards life cycle sustainability assessment: An implementation to photovoltaic modules,” Int. J. Life Cycle Assess., vol. 17, no. 8, 2012, doi: 10.1007/s11367-012-0433-8.
  • [41] E. M. Schau, M. Traverso, A. Lehmannann, and M. Finkbeiner, “Life cycle costing in sustainability assessment-A case study of remanufactured alternators,” Sustainability, vol. 3, no. 11, 2011, doi: 10.3390/su3112268.
  • [42] Z. Zhou, H. Jiang, and L. Qin, “Life cycle sustainability assessment of fuels,” Fuel, vol. 86, no. 1–2, 2007, doi: 10.1016/j.fuel.2006.06.004.
  • [43] M. Mori et al., “Life cycle sustainability assessment of a proton exchange membrane fuel cell technology for ecodesign purposes,” Int. J. Hydrogen Energy, vol. 48, no. 99, 2023, doi: 10.1016/j.ijhydene.2023.05.255.
  • [44] P. Gosalvitr, R. M. Cuéllar-Franca, R. Smith, and A. Azapagic, “Integrating process modelling and sustainability assessment to improve the environmental and economic sustainability in the cheese industry,” Sustain. Prod. Consum., vol. 28, 2021, doi: 10.1016/j.spc.2021.07.022.
  • [45] P. Pradhan, P. Karan, and R. Chakraborty, “Life cycle sustainability assessment of optimized biodiesel production from used rice bran oil employing waste derived-hydroxyapatite supported vanadium catalyst,” Environ. Sci. Pollut. Res., vol. 29, no. 14, 2022, doi: 10.1007/s11356-021-16482-x.
  • [46] N. Samaroo, N. Koylass, M. Guo, and K. Ward, “Achieving absolute sustainability across integrated industrial networks-a case study on the ammonia process,” Green Chem., vol. 22, no. 19, 2020, doi: 10.1039/d0gc02520h.
  • [47] X. Zhang, L. Zhang, K. Y. Fung, B. R. Bakshi, and K. M. Ng, “Sustainable product design: A life-cycle approach,” Chem. Eng. Sci., vol. 217, 2020, doi: 10.1016/j.ces.2020.115508.
  • [48] J. M. Aberilla, A. Gallego-Schmid, L. Stamford, and A. Azapagic, “An integrated sustainability assessment of synergistic supply of energy and water in remote communities,” Sustain. Prod. Consum., vol. 22, 2020, doi: 10.1016/j.spc.2020.01.003.
  • [49] M. Nieder-Heitmann, K. F. Haigh, and J. F. Görgens, “Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: Finding a sustainable solution for the South African sugar industry,” J. Clean. Prod., vol. 239, 2019, doi: 10.1016/j.jclepro.2019.118039.
  • [50] Á. Botos, J. D. Graham, and Z. Illés, “Industrial chemical regulation in the European Union and the United States: a comparison of REACH and the amended TSCA#,” J. Risk Res., vol. 22, no. 10, 2019, doi: 10.1080/13669877.2018.1454495.
  • [51] E. Ekener, J. Hansson, A. Larsson, and P. Peck, “Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels,” J. Clean. Prod., vol. 181, 2018, doi: 10.1016/j.jclepro.2018.01.211.
  • [52] T. A. Nguyen, Y. Maeda, K. Kuroda, and K. Otsuka, “Inclusive impact assessment for the sustainability of vegetable oil-based biodiesel - Part II: Sustainability assessment of inedible vegetable oil-based biodiesel in Ha Long Bay, Vietnam,” J. Clean. Prod., vol. 168, 2017, doi: 10.1016/j.jclepro.2017.08.238.
  • [53] C. Wulf, P. Zapp, A. Schreiber, J. Marx, and H. Schlör, “Lessons Learned from a Life Cycle Sustainability Assessment of Rare Earth Permanent Magnets,” J. Ind. Ecol., vol. 21, no. 6, 2017, doi: 10.1111/jiec.12575.
  • [54] M. Kucukvar, M. Noori, G. Egilmez, and O. Tatari, “Stochastic decision modeling for sustainable pavement designs,” Int. J. Life Cycle Assess., vol. 19, no. 6, 2014, doi: 10.1007/s11367-014-0723-4.
  • [55] L. Schneider et al., “The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment,” Int. J. Life Cycle Assess., vol. 19, no. 3, 2014, doi: 10.1007/s11367-013-0666-1.
  • [56] M. Kucukvar, S. Gumus, G. Egilmez, and O. Tatari, “Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method,” Autom. Constr., vol. 40, 2014, doi: 10.1016/j.autcon.2013.12.009.
  • [57] Y. Song et al., “Comparative life-cycle sustainability assessment of centralized and decentralized remediation strategies at the city level,” Sci. Total Environ., vol. 919, 2024, doi: 10.1016/j.scitotenv.2024.170908.
  • [58] T. Opher, E. Friedler, and A. Shapira, “Comparative life cycle sustainability assessment of urban water reuse at various centralization scales,” Int. J. Life Cycle Assess., vol. 24, no. 7, 2019, doi: 10.1007/s11367-018-1469-1.
  • [59] K. R. Reddy, J. K. Chetri, and K. Kiser, “Quantitative sustainability assessment of various remediation alternatives for contaminated lake sediments: Case study,” Sustain. (United States), vol. 11, no. 6, 2018, doi: 10.1089/sus.2018.0021.
  • [60] J. Wang, S. D. Maier, R. Horn, R. Holländer, and R. Aschemann, “Development of an ex-ante sustainability assessment methodology for municipal solid waste management innovations,” Sustain., vol. 10, no. 9, 2018, doi: 10.3390/su10093208.
  • [61] W. I. Sou, A. Chu, and P. T. Chiueh, “Sustainability assessment and prioritisation of bottom ash management in Macao,” Waste Manag. Res., vol. 34, no. 12, 2016, doi: 10.1177/0734242X16665914.
  • [62] P. P. Kalbar, S. Karmakar, and S. R. Asolekar, “Life cycle-based decision support tool for selection of wastewater treatment alternatives,” J. Clean. Prod., vol. 117, 2016, doi: 10.1016/j.jclepro.2016.01.036.
  • [63] R. K. Foolmaun and T. Ramjeawon, “Life cycle sustainability assessments (LCSA) of four disposal scenarios for used polyethylene terephthalate (PET) bottles in Mauritius,” Environ. Dev. Sustain., vol. 15, no. 3, 2013, doi: 10.1007/s10668-012-9406-0.
  • [64] N. R. Khalili, D. Ehrlich, and K. Dia-Eddine, “A qualitative multi-criteria, multi stakeholder decision making tool for sustainable waste management,” Prog. Ind. Ecol., vol. 8, no. 1–2, 2013, doi: 10.1504/PIE.2013.055063.
  • [65] J. Ren and S. Toniolo, “Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach,” J. Clean. Prod., vol. 175, 2018, doi: 10.1016/j.jclepro.2017.12.070.
  • [66] C. Helbig et al., “Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers,” J. Clean. Prod., vol. 137, 2016, doi: 10.1016/j.jclepro.2016.07.214.
  • [67] J. Ren, A. Manzardo, A. Mazzi, F. Zuliani, and A. Scipioni, “Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making,” Int. J. Life Cycle Assess., vol. 20, no. 6, 2015, doi: 10.1007/s11367-015-0877-8.
  • [68] A. Cimprich et al., “Extension of geopolitical supply risk methodology: Characterization model applied to conventional and electric vehicles,” J. Clean. Prod., vol. 162, 2017, doi: 10.1016/j.jclepro.2017.06.063.
  • [69] E. D. Gemechu, G. Sonnemann, and S. B. Young, “Geopolitical-related supply risk assessment as a complement to environmental impact assessment: the case of electric vehicles,” Int. J. Life Cycle Assess., vol. 22, no. 1, 2017, doi: 10.1007/s11367-015-0917-4.
  • [70] N. C. Onat, M. Kucukvar, O. Tatari, and Q. P. Zheng, “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” J. Clean. Prod., vol. 112, 2016, doi: 10.1016/j.jclepro.2015.09.021.
  • [71] A. I. De Luca, G. Falcone, T. Stillitano, N. Iofrida, A. Strano, and G. Gulisano, “Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy,” J. Clean. Prod., vol. 171, 2018, doi: 10.1016/j.jclepro.2017.10.119.
  • [72] R. B. Zortea, V. G. Maciel, and A. Passuello, “Sustainability assessment of soybean production in Southern Brazil: A life cycle approach,” Sustain. Prod. Consum., vol. 13, 2018, doi: 10.1016/j.spc.2017.11.002.
  • [73] R. Aziz, P. Chevakidagarn, and S. Danteravanich, “Life cycle sustainability assessment of community composting of agricultural and agro industrial wastes,” J. Sustain. Sci. Manag., vol. 11, no. 2, 2016.
  • [74] W. C. Lam, S. de Regel, K. Peeters, and C. Spirinckx, “Applying life cycle sustainability assessment to maximise the innovation potential of new technologies for critical components in wind turbines,” in Journal of Physics: Conference Series, 2021, vol. 2042, no. 1, doi: 10.1088/1742-6596/2042/1/012103.
  • [75] L. Zanchi, M. Delogu, C. A. Dattilo, A. Zamagni, and F. Del Pero, “Integrating Life Cycle Sustainability Assessment Results Using Fuzzy-TOPSIS in Automotive Lightweighting,” SAE Int. J. Mater. Manuf., vol. 14, no. 3, 2021, doi: 10.4271/05-14-03-0022.
  • [76] I. Ribeiro et al., “Framework for life cycle sustainability assessment of additive manufacturing,” Sustain., vol. 12, no. 3, 2020, doi: 10.3390/su12030929.
  • [77] C. Feng and S. Huang, “The analysis of key technologies for sustainable machine tools design,” Applied Sciences (Switzerland), vol. 10, no. 3. 2020, doi: 10.3390/app10030731.
  • [78] A. Biedermann, N. M. López, J. L. S. Sáenz, and J. I. V. Martín, “Sustainability improvement in complex systems composed of products and services,” Int. J. Life Cycle Assess., vol. 27, no. 1, 2022, doi: 10.1007/s11367-021-02014-9.
  • [79] N. M. López, J. L. S. Sáenz, A. Biedermann, and A. S. Tierz, “Sustainability assessment of product-service systems using flows between systems approach,” Sustain., vol. 12, no. 8, 2020, doi: 10.3390/SU12083415.
  • [80] A. J. Raymond, J. T. DeJong, A. Kendall, J. T. Blackburn, and R. Deschamps, “Life Cycle Sustainability Assessment of Geotechnical Ground Improvement Methods,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 12, 2021, doi: 10.1061/(asce)gt.1943-5606.0002646.
  • [81] A. Cimprich, K. S. Karim, and S. B. Young, “Extending the geopolitical supply risk method: material ‘substitutability’ indicators applied to electric vehicles and dental X-ray equipment,” Int. J. Life Cycle Assess., vol. 23, no. 10, 2018, doi: 10.1007/s11367-017-1418-4.
  • [82] D. Settembre Blundo, F. E. García-Muiña, M. Pini, L. Volpi, C. Siligardi, and A. M. Ferrari, “Sustainability as source of competitive advantages in mature sectors: The case of Ceramic District of Sassuolo (Italy),” Smart Sustain. Built Environ., vol. 8, no. 1, 2019, doi: 10.1108/SASBE-07-2018-0038.
  • [83] S. Akhtar, B. Reza, K. Hewage, A. Shahriar, A. Zargar, and R. Sadiq, “Life cycle sustainability assessment (LCSA) for selection of sewer pipe materials,” Clean Technol. Environ. Policy, vol. 17, no. 4, 2014, doi: 10.1007/s10098-014-0849-x.
There are 83 citations in total.

Details

Primary Language English
Subjects Life Cycle Assessment and Industrial Ecology, Machine Design and Machine Equipment
Journal Section Tasarım ve Teknoloji
Authors

Seher Demir 0000-0002-0686-5238

Veysel Özdemir 0000-0001-9806-9599

Early Pub Date September 26, 2024
Publication Date September 30, 2024
Submission Date July 29, 2024
Acceptance Date September 18, 2024
Published in Issue Year 2024

Cite

APA Demir, S., & Özdemir, V. (2024). Sectorial Investigation of Life Cycle Sustainability Assessment in the Context of Case Studies. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 684-701. https://doi.org/10.29109/gujsc.1524018

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526