This study investigates the impact of ball burnishing on the surface quality of Al5080 aluminum alloy, focusing on burnishing force, feed rate, and lubricant conditions. The research employs an innovative approach using grease with incorporated aluminum nanoparticles as a lubricant. Experiments were designed and analyzed using the Taguchi method, with surface roughness parameters (Ra and Rz) measured via a contact-based profilometer. The study systematically varies key process parameters: burnishing force (100N, 200N, 400N), feed rate (0.5 mm/min, 1 mm/min, 2 mm/min), and aluminum nanoparticle concentration in the lubricant (0%, 5%, 10% by weight). Results indicate that surface finish improves with increasing burnishing force, moderate feed rates, and higher concentrations of aluminum nanoparticles in the lubricant. Notably, the study reveals complex parameter interrelationships, emphasizing the need for multi-parameter control in achieving optimal surface quality. This research contributes to enhancing knowledge of surface treatments applicable to Al5080 alloy, aiming to improve surface characteristics for high-quality aluminum products, particularly those used in marine and coastal environments. The findings have significant implications for industries requiring high-performance aluminum components with improved surface properties. Furthermore, the use of nanoparticle-enhanced lubricants opens avenues for more efficient and environmentally friendly surface treatment technologies in light-weight material manufacturing.
Primary Language | English |
---|---|
Subjects | Optimization Techniques in Mechanical Engineering, Tribology |
Journal Section | Tasarım ve Teknoloji |
Authors | |
Early Pub Date | September 26, 2024 |
Publication Date | September 30, 2024 |
Submission Date | August 9, 2024 |
Acceptance Date | September 2, 2024 |
Published in Issue | Year 2024 |