Research Article
BibTex RIS Cite

Metal Şekillendirme Proseslerinde Sac Açınım Geometrisinin Sonlu Elemanlar Yöntemi ile Geliştirilmesi

Year 2018, , 79 - 89, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.319383

Abstract



Ağırlık/dayanım avantajlarından dolayı sac metal malzemeler
bir çok endüstriyel uygulamada tercih edilmektedir. Proses tasarımı, sac metal
şekillendirme yöntemleri açısından oldukça kritik bir adımdır. Sac açınım
geometrisinin belirlenmesi proses tasarımı açısından oldukça önemlidir. Optimum
açınım geometrisinin belirlenmesi ile malzeme fire miktarları önemli oranlarda
azaltılabilmektedir. Bu çalışmada kare çekme prosesi için, alüminyum 5754
alaşımı kullanılarak proses parametrelerini ve ürün geometrisini dikkate alan
sonlu elemanlar yöntemi tabanlı bir sac açınım geliştirme yöntemi sunulmuştur.
Elde edilen yeni sac açınımı ile malzeme fire miktarında önemli bir kazanç elde
edilmiş ve şekillendirilebilirlik açısından daha güvenli bir geometri
oluşturulmuştur.

References

  • [1] D. Jiadong, M. Huajie, A blank optimization design method for three-roll cross rolling of complex-groove and small-hole ring. International Journal of Mechanical Sciences, 93 (2015) 218-228.
  • [2] A. Fazli, B. Arezoo, A comparison of numerical iteration based algorithms in blank optimization. Finite Elements in Analysis and Design, 50 (2012) 207-216.
  • [3] F. H. Yeh, M. T. Wu, C. L. Li, Accurate optimization of blank design in stretch flange based on a forward–inverse prediction scheme. International Journal of Machine Tools and Manufacture, 47: 12 (2007) 1854-1863.
  • [4] H. Naceur, Y. Q. Guo, J. L. Batoz, Blank optimization in sheet metal forming using an evolutionary algorithm. Journal of Materials Processing Technology, 151: 1 (2004) 183-191.
  • [5] M. Azaouzi, S. Belouettar, G. Rauchs, A numerical method for the optimal blank shape design. Materials & Design, 32: 2 (2011) 756-765.
  • [6] R. De-Carvalho, S. Silva, R. A. F. Valente, A. Andrade-Campos, Blank optimization in a stamping process—Influence of the geometry definition. Finite Elements in Analysis and Design, 61 (2012) 75-84.
  • [7] M. C. Oliveira, R. Padmanabhan, A. J. Baptista, J. L. Alves, L. F. Menezes, Sensitivity study on some parameters in blank design. Materials & Design, 30: 4 (2009) 1223-1230.
  • [8] R. Padmanabhan, M. C. Oliveira, A. J. Baptista, J. L. Alves, L. F. Menezes, Numerical study on the influence of initial anisotropy on optimal blank shape. Finite Elements in Analysis and Design, 45: 2 (2009) 71-80.
  • [9] R. Padmanabhan, M. C. Oliveira, A. J. Baptista, J. L. Alves, L. F. Menezes, Blank design for deep drawn parts using parametric NURBS surfaces. Journal of Materials Processing Technology, 209: 5 (2009) 2402-2411.
  • [10] M. H. Parsa, P. Pournia, Optimization of initial blank shape predicted based on inverse finite element method. Finite Elements in Analysis and Design, 43: 3 (2007) 218-233.
  • [11] M. Firat, Computer aided analysis and design of sheet metal forming processes: Part I – The finite element modeling concepts. Materials & Design, 28 (2007) 1298–1303.
  • [12] M. Turkoz, M. Dilmec, H. S. Halkaci, Investigation on Earing Behavior of AA 2024-T4 and AA 5754-O Aluminum Alloys. Advanced Materials Research, 264 (2011) 12-17.
  • [13] Aluminium Automotive Manual, European Aluminium Association, Ch. 5, (2011) 15.
  • [14] R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London, (1948) 281-297.
  • [15] Ls-Dyna Theoretical Manual, Livermore Software Technology Corporation, 1998.
  • [16] İnternet, https://www.metalreyonu.com/urun/aluminyum-levha-1-mm-, Erişim tarihi: 17.05.2017.
Year 2018, , 79 - 89, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.319383

Abstract

References

  • [1] D. Jiadong, M. Huajie, A blank optimization design method for three-roll cross rolling of complex-groove and small-hole ring. International Journal of Mechanical Sciences, 93 (2015) 218-228.
  • [2] A. Fazli, B. Arezoo, A comparison of numerical iteration based algorithms in blank optimization. Finite Elements in Analysis and Design, 50 (2012) 207-216.
  • [3] F. H. Yeh, M. T. Wu, C. L. Li, Accurate optimization of blank design in stretch flange based on a forward–inverse prediction scheme. International Journal of Machine Tools and Manufacture, 47: 12 (2007) 1854-1863.
  • [4] H. Naceur, Y. Q. Guo, J. L. Batoz, Blank optimization in sheet metal forming using an evolutionary algorithm. Journal of Materials Processing Technology, 151: 1 (2004) 183-191.
  • [5] M. Azaouzi, S. Belouettar, G. Rauchs, A numerical method for the optimal blank shape design. Materials & Design, 32: 2 (2011) 756-765.
  • [6] R. De-Carvalho, S. Silva, R. A. F. Valente, A. Andrade-Campos, Blank optimization in a stamping process—Influence of the geometry definition. Finite Elements in Analysis and Design, 61 (2012) 75-84.
  • [7] M. C. Oliveira, R. Padmanabhan, A. J. Baptista, J. L. Alves, L. F. Menezes, Sensitivity study on some parameters in blank design. Materials & Design, 30: 4 (2009) 1223-1230.
  • [8] R. Padmanabhan, M. C. Oliveira, A. J. Baptista, J. L. Alves, L. F. Menezes, Numerical study on the influence of initial anisotropy on optimal blank shape. Finite Elements in Analysis and Design, 45: 2 (2009) 71-80.
  • [9] R. Padmanabhan, M. C. Oliveira, A. J. Baptista, J. L. Alves, L. F. Menezes, Blank design for deep drawn parts using parametric NURBS surfaces. Journal of Materials Processing Technology, 209: 5 (2009) 2402-2411.
  • [10] M. H. Parsa, P. Pournia, Optimization of initial blank shape predicted based on inverse finite element method. Finite Elements in Analysis and Design, 43: 3 (2007) 218-233.
  • [11] M. Firat, Computer aided analysis and design of sheet metal forming processes: Part I – The finite element modeling concepts. Materials & Design, 28 (2007) 1298–1303.
  • [12] M. Turkoz, M. Dilmec, H. S. Halkaci, Investigation on Earing Behavior of AA 2024-T4 and AA 5754-O Aluminum Alloys. Advanced Materials Research, 264 (2011) 12-17.
  • [13] Aluminium Automotive Manual, European Aluminium Association, Ch. 5, (2011) 15.
  • [14] R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London, (1948) 281-297.
  • [15] Ls-Dyna Theoretical Manual, Livermore Software Technology Corporation, 1998.
  • [16] İnternet, https://www.metalreyonu.com/urun/aluminyum-levha-1-mm-, Erişim tarihi: 17.05.2017.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Emre Esener

Emre Sönmez This is me

Mehmet Fırat

Publication Date March 30, 2018
Submission Date June 6, 2017
Published in Issue Year 2018

Cite

APA Esener, E., Sönmez, E., & Fırat, M. (2018). Metal Şekillendirme Proseslerinde Sac Açınım Geometrisinin Sonlu Elemanlar Yöntemi ile Geliştirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(1), 79-89. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.319383

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526