Research Article
BibTex RIS Cite

Tersine Mühendislik Yaklaşımına Dayalı Yeni Bir İmalat İçin Tasarım İşlem Modeli

Year 2018, , 91 - 104, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.327479

Abstract

Mühendislik
disiplini; ileriye mühendislik ve tersine mühendislik (TM) olarak ikiye
ayrılır. İleriye mühendislikte süreç, problemin tanımından çözümün üretilip
test edilmesi ve en iyileştirilmesi ile gelişir. Tersine mühendislikte ise
süreç, mevcut bir çözümün incelenip analiz edilmesi ve bunun yeniden tasarımı,
geliştirilmesi ve imali şeklinde gelişir. Bu çalışmada, öncelikle tersine
mühendislik yöntemleri ile ilgili kaynak araştırması yapılarak mevcut yöntemler
açıklanmıştır. Ayrıca, tersine mühendislik yöntemini de kullanan yeni bir
imalat için tasarım işlem modeli önerilmiştir. Önerilen tasarım işlem modeli
ile tasarımcılara kaliteli destek sağlanması hedeflenmiştir.

References

  • S. Batni and M. L. J. A. Tiwari, “Reverse engineering : a brief review,” Int. J. Emerg. Technol., vol. 1, no. 2, pp. 73–76, 2010.
  • W. B. Thompson, J. C. Owen, H. J. De St. Germain, S. R. Stark, and T. C. Henderson, “Feature-based reverse engineering of mechanical parts,” IEEE Trans. Robot. Autom., vol. 15, no. 1, pp. 57–66, 1999.
  • P. M. KUMAR A.; JAIN, P. K. & PATHAK, “Reverse Engineering in Product Manufacturing: An overview,” Daaam Int. Sci. B. 2013, pp. 665–678, 2013.
  • J. Herráez, J. C. Martínez, E. Coll, M. T. Martín, and J. Rodríguez, “3D modeling by means of videogrammetry and laser scanners for reverse engineering,” Measurement, vol. 87, pp. 216–227, 2016.
  • J. Kaufman, A. E. W. Rennie, and M. Clement, “Single camera photogrammetry for reverse engineering and fabrication of ancient and modern artifacts,” Procedia CIRP, vol. 36, pp. 223–229, 2015.
  • “Photo to 3D: How to Turn a Single Photo into a 3D Model & 3D Print,” 2016. [Online]. Available: https://i.materialise.com/blog/how-to-turn-a-single-photo-into-a-3d-print-with-a-free-online-app/. [Accessed: 12-Jun-2016].
  • P. Fayolle and A. Pasko, “An evolutionary approach to the extraction of object construction trees from 3D point clouds,” Comput. Des., vol. 74, pp. 1–17, 2016.
  • S. M. Jeon, J. H. Lee, G. J. Hahm, and H. W. Suh, “Automatic CAD model retrieval based on design documents using semantic processing and rule processing,” Comput. Ind., vol. 77, pp. 29–47, 2016.
  • C. K. Au and M. M. F. Yuen, “Feature-based reverse engineering of mannequin for garment design,” Comput. Des., vol. 31, no. 12, pp. 751–759, 1999.
  • T. F. Alghazzawi, “Advancements in CAD/CAM technology: Options for practical implementation,” J. Prosthodont. Res., vol. 60, no. 2, pp. 72–84, 2016.
  • A. P. Valerga, M. Batista, R. Bienvenido, S. R. Fernández-Vidal, C. Wendt, and M. Marcos, “Reverse Engineering Based Methodology for Modelling Cutting Tools,” Procedia Eng., vol. 132, pp. 1144–1151, 2015.
  • A. C. Lin and N. H. Quang, “Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design,” CAD Comput. Aided Des., vol. 57, pp. 15–28, 2014.
  • G. Chintala and P. Gudimetla, “Optimum material evaluation for gas turbine blade using Reverse Engineering (RE) and FEA,” Procedia Eng., vol. 97, pp. 1332–1340, 2014.
  • V. Majstorovic, M. Trajanovic, N. Vitkovic, and M. Stojkovic, “Reverse engineering of human bones by using method of anatomical features,” CIRP Ann. - Manuf. Technol., vol. 62, no. 1, pp. 167–170, 2013.
  • H. J. de St. Germain, “Reverse Engineering Utilizing Domain Specific Knowledge,” The University of Utah, 2002.
  • X. Ye, H. Liu, L. Chen, Z. Chen, X. Pan, and S. Zhang, “Reverse innovative design — an integrated product design methodology,” Comput. Des., vol. 40, pp. 812–827, 2008.
  • J. E. Shigley, C. R. Mischke, and R. G. Budynas, Mechanical Engineering Design, vol. New York,. 2002.
  • R. Messler, Reverse Engineering: Mechanisms, Structures, Systems & Materials, 1st ed. Mc Graw Hill, 2014.
  • G. Boothroyd, P. Dewhurst, and W. A. Knight, Product Design for Manufacture and Assembly. 2002.
  • A. C. Telea, Reverse Engineering – Recent Advances and Applications. InTech, 2012.
  • Kalpakjian S, Schmid SR. Manufacturing engineering and technology. New York; Toronto: Prentice Hall; 2010.
  • B. K. Choi and K. Ko, “C-space based CAPP algorithm for freeform die-cavity machining,” CAD Comput. Aided Des., vol. 35, no. 2, pp. 179–189, 2003.
  • M. a. Younis and M. a. Abdel Wahab, “A CAPP expert system for rotational components,” Comput. Ind. Eng., vol. 33, no. 3–4, pp. 509–512, 1997.
  • L. Sabourin and F. Villeneuve, “OMEGA, an expert CAPP system,” Adv. Eng. Softw., vol. 25, no. 1, pp. 51–59, 1996.
  • C. Grabowik, K. Kalinowski, and Z. Monica, “Integration of the CAD/CAPP/PPC systems,” J. Mater. Process. Technol., vol. 164–165, pp. 1358–1368, 2005.
  • J. P. Kruth, J. Detand, G. Van Zeir, J. Kempenaers, and J. Pinte, “Methods to improve the response time of a CAPP system that generates non-linear process plans,” Adv. Eng. Softw., vol. 25, no. 1, pp. 9–17, 1996.
  • S. C. Feng and E. Y. Song, “A manufacturing process information model for design and process planning integration,” J. Manuf. Syst., vol. 22, no. 1, pp. 1–15, 2003.
  • I. Rojek, Neural Networks as Classification Models in Intelligent CAPP Systems, vol. 41, no. 3. IFAC, 2008.
  • H. C. Lee, W. C. Jhee, and H. S. Park, “Generative CAPP through projective feature recognition,” Comput. Ind. Eng., vol. 53, no. 2, pp. 241–246, 2007.
  • X. Zhou, Y. Qiu, G. Hua, H. Wang, and X. Ruan, “A feasible approach to the integration of CAD and CAPP,” CAD Comput. Aided Des., vol. 39, no. 4, pp. 324–338, 2007.
  • E. Chlebus and K. Krot, “CAD 3D models decomposition in manufacturing processes,” Arch. Civ. Mech. Eng., vol. 16, no. 1, pp. 20–29, 2016.
  • S. Gao and J. J. Shah, “Automatic recognition of interacting machining features based on minimal condition subgraph,” Comput. Des., vol. 30, no. 9, pp. 727–739, 1998.
  • M. P. Bhandarkar and R. Nagi, “STEP-based feature extraction from STEP geometry for Agile Manufacturing,” Comput. Ind., vol. 41, no. 1, pp. 3–24, 2000.
  • Y. C. Lee and K. S. Fu, “Machine Understanding of CSG: Extraction and Unification of Manufacturing Features,” IEEE Comput. Graph. Appl., vol. 7, no. 1, pp. 20–32, 1987.
  • B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature recognition with rule-based pattern recognition,” Comput. Ind., vol. 59, no. 4, pp. 321–337, 2008.
  • V. B. Sunil and S. S. Pande, “Automatic recognition of features from freeform surface CAD models,” CAD Comput. Aided Des., vol. 40, no. 4, pp. 502–517, 2008.
  • A. S. M. Hoque, P. K. Halder, M. S. Parvez, and T. Szecsi, “Integrated manufacturing features and Design-for-manufacture guidelines for reducing product cost under CAD/CAM environment,” Comput. Ind. Eng., vol. 66, no. 4, 2013.
  • M. Richard, “Extraction of Feature Information From Three-Dimensional Cad Data,” 1984.
  • A. C. Lin, S.-Y. Lin, and S.-B. Cheng, “Extraction of manufacturing features from a feature-based design model,” Int. J. Prod. Res., vol. 35, no. 12, pp. 3249–3288, 1997.
  • E. S. Abouel Nasr and A. K. Kamrani, “A new methodology for extracting manufacturing features from CAD system,” Comput. Ind. Eng., vol. 51, no. 3, pp. 389–415, 2006.
  • A. Kuss, T. Dietz, K. Ksensow, and A. Verl, “Manufacturing Task Description for Robotic Welding and Automatic Feature Recognition on Product CAD Models,” Procedia CIRP, vol. 60, no. 1, pp. 122–127, 2017.
  • Y. Yang, H. T. Loh, J. Y. H. Fuh, and Y. S. Wong, “Feature extraction and volume decomposition for orthogonal layered manufacturing,” CAD Comput. Aided Des., vol. 35, no. 12, pp. 1119–1128, 2003.
  • B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of manufacturing: A review,” J. Manuf. Syst., vol. 39, pp. 79–100, 2016.
  • “Nassehi A, Newman S, Dhokia V, Zhu Z, Asrai R. Using formal methods to model hybrid manufacturing processes. In: ElMaraghy HA, editor. Enabling manufacturing competitiveness and economic sustainability SE-8. Berlin Hei- delberg: Springer; 2012. p. 52–6.”
Year 2018, , 91 - 104, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.327479

Abstract

References

  • S. Batni and M. L. J. A. Tiwari, “Reverse engineering : a brief review,” Int. J. Emerg. Technol., vol. 1, no. 2, pp. 73–76, 2010.
  • W. B. Thompson, J. C. Owen, H. J. De St. Germain, S. R. Stark, and T. C. Henderson, “Feature-based reverse engineering of mechanical parts,” IEEE Trans. Robot. Autom., vol. 15, no. 1, pp. 57–66, 1999.
  • P. M. KUMAR A.; JAIN, P. K. & PATHAK, “Reverse Engineering in Product Manufacturing: An overview,” Daaam Int. Sci. B. 2013, pp. 665–678, 2013.
  • J. Herráez, J. C. Martínez, E. Coll, M. T. Martín, and J. Rodríguez, “3D modeling by means of videogrammetry and laser scanners for reverse engineering,” Measurement, vol. 87, pp. 216–227, 2016.
  • J. Kaufman, A. E. W. Rennie, and M. Clement, “Single camera photogrammetry for reverse engineering and fabrication of ancient and modern artifacts,” Procedia CIRP, vol. 36, pp. 223–229, 2015.
  • “Photo to 3D: How to Turn a Single Photo into a 3D Model & 3D Print,” 2016. [Online]. Available: https://i.materialise.com/blog/how-to-turn-a-single-photo-into-a-3d-print-with-a-free-online-app/. [Accessed: 12-Jun-2016].
  • P. Fayolle and A. Pasko, “An evolutionary approach to the extraction of object construction trees from 3D point clouds,” Comput. Des., vol. 74, pp. 1–17, 2016.
  • S. M. Jeon, J. H. Lee, G. J. Hahm, and H. W. Suh, “Automatic CAD model retrieval based on design documents using semantic processing and rule processing,” Comput. Ind., vol. 77, pp. 29–47, 2016.
  • C. K. Au and M. M. F. Yuen, “Feature-based reverse engineering of mannequin for garment design,” Comput. Des., vol. 31, no. 12, pp. 751–759, 1999.
  • T. F. Alghazzawi, “Advancements in CAD/CAM technology: Options for practical implementation,” J. Prosthodont. Res., vol. 60, no. 2, pp. 72–84, 2016.
  • A. P. Valerga, M. Batista, R. Bienvenido, S. R. Fernández-Vidal, C. Wendt, and M. Marcos, “Reverse Engineering Based Methodology for Modelling Cutting Tools,” Procedia Eng., vol. 132, pp. 1144–1151, 2015.
  • A. C. Lin and N. H. Quang, “Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design,” CAD Comput. Aided Des., vol. 57, pp. 15–28, 2014.
  • G. Chintala and P. Gudimetla, “Optimum material evaluation for gas turbine blade using Reverse Engineering (RE) and FEA,” Procedia Eng., vol. 97, pp. 1332–1340, 2014.
  • V. Majstorovic, M. Trajanovic, N. Vitkovic, and M. Stojkovic, “Reverse engineering of human bones by using method of anatomical features,” CIRP Ann. - Manuf. Technol., vol. 62, no. 1, pp. 167–170, 2013.
  • H. J. de St. Germain, “Reverse Engineering Utilizing Domain Specific Knowledge,” The University of Utah, 2002.
  • X. Ye, H. Liu, L. Chen, Z. Chen, X. Pan, and S. Zhang, “Reverse innovative design — an integrated product design methodology,” Comput. Des., vol. 40, pp. 812–827, 2008.
  • J. E. Shigley, C. R. Mischke, and R. G. Budynas, Mechanical Engineering Design, vol. New York,. 2002.
  • R. Messler, Reverse Engineering: Mechanisms, Structures, Systems & Materials, 1st ed. Mc Graw Hill, 2014.
  • G. Boothroyd, P. Dewhurst, and W. A. Knight, Product Design for Manufacture and Assembly. 2002.
  • A. C. Telea, Reverse Engineering – Recent Advances and Applications. InTech, 2012.
  • Kalpakjian S, Schmid SR. Manufacturing engineering and technology. New York; Toronto: Prentice Hall; 2010.
  • B. K. Choi and K. Ko, “C-space based CAPP algorithm for freeform die-cavity machining,” CAD Comput. Aided Des., vol. 35, no. 2, pp. 179–189, 2003.
  • M. a. Younis and M. a. Abdel Wahab, “A CAPP expert system for rotational components,” Comput. Ind. Eng., vol. 33, no. 3–4, pp. 509–512, 1997.
  • L. Sabourin and F. Villeneuve, “OMEGA, an expert CAPP system,” Adv. Eng. Softw., vol. 25, no. 1, pp. 51–59, 1996.
  • C. Grabowik, K. Kalinowski, and Z. Monica, “Integration of the CAD/CAPP/PPC systems,” J. Mater. Process. Technol., vol. 164–165, pp. 1358–1368, 2005.
  • J. P. Kruth, J. Detand, G. Van Zeir, J. Kempenaers, and J. Pinte, “Methods to improve the response time of a CAPP system that generates non-linear process plans,” Adv. Eng. Softw., vol. 25, no. 1, pp. 9–17, 1996.
  • S. C. Feng and E. Y. Song, “A manufacturing process information model for design and process planning integration,” J. Manuf. Syst., vol. 22, no. 1, pp. 1–15, 2003.
  • I. Rojek, Neural Networks as Classification Models in Intelligent CAPP Systems, vol. 41, no. 3. IFAC, 2008.
  • H. C. Lee, W. C. Jhee, and H. S. Park, “Generative CAPP through projective feature recognition,” Comput. Ind. Eng., vol. 53, no. 2, pp. 241–246, 2007.
  • X. Zhou, Y. Qiu, G. Hua, H. Wang, and X. Ruan, “A feasible approach to the integration of CAD and CAPP,” CAD Comput. Aided Des., vol. 39, no. 4, pp. 324–338, 2007.
  • E. Chlebus and K. Krot, “CAD 3D models decomposition in manufacturing processes,” Arch. Civ. Mech. Eng., vol. 16, no. 1, pp. 20–29, 2016.
  • S. Gao and J. J. Shah, “Automatic recognition of interacting machining features based on minimal condition subgraph,” Comput. Des., vol. 30, no. 9, pp. 727–739, 1998.
  • M. P. Bhandarkar and R. Nagi, “STEP-based feature extraction from STEP geometry for Agile Manufacturing,” Comput. Ind., vol. 41, no. 1, pp. 3–24, 2000.
  • Y. C. Lee and K. S. Fu, “Machine Understanding of CSG: Extraction and Unification of Manufacturing Features,” IEEE Comput. Graph. Appl., vol. 7, no. 1, pp. 20–32, 1987.
  • B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature recognition with rule-based pattern recognition,” Comput. Ind., vol. 59, no. 4, pp. 321–337, 2008.
  • V. B. Sunil and S. S. Pande, “Automatic recognition of features from freeform surface CAD models,” CAD Comput. Aided Des., vol. 40, no. 4, pp. 502–517, 2008.
  • A. S. M. Hoque, P. K. Halder, M. S. Parvez, and T. Szecsi, “Integrated manufacturing features and Design-for-manufacture guidelines for reducing product cost under CAD/CAM environment,” Comput. Ind. Eng., vol. 66, no. 4, 2013.
  • M. Richard, “Extraction of Feature Information From Three-Dimensional Cad Data,” 1984.
  • A. C. Lin, S.-Y. Lin, and S.-B. Cheng, “Extraction of manufacturing features from a feature-based design model,” Int. J. Prod. Res., vol. 35, no. 12, pp. 3249–3288, 1997.
  • E. S. Abouel Nasr and A. K. Kamrani, “A new methodology for extracting manufacturing features from CAD system,” Comput. Ind. Eng., vol. 51, no. 3, pp. 389–415, 2006.
  • A. Kuss, T. Dietz, K. Ksensow, and A. Verl, “Manufacturing Task Description for Robotic Welding and Automatic Feature Recognition on Product CAD Models,” Procedia CIRP, vol. 60, no. 1, pp. 122–127, 2017.
  • Y. Yang, H. T. Loh, J. Y. H. Fuh, and Y. S. Wong, “Feature extraction and volume decomposition for orthogonal layered manufacturing,” CAD Comput. Aided Des., vol. 35, no. 12, pp. 1119–1128, 2003.
  • B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of manufacturing: A review,” J. Manuf. Syst., vol. 39, pp. 79–100, 2016.
  • “Nassehi A, Newman S, Dhokia V, Zhu Z, Asrai R. Using formal methods to model hybrid manufacturing processes. In: ElMaraghy HA, editor. Enabling manufacturing competitiveness and economic sustainability SE-8. Berlin Hei- delberg: Springer; 2012. p. 52–6.”
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Tamer Türkücü

H. Rıza Börklü

Publication Date March 30, 2018
Submission Date July 9, 2017
Published in Issue Year 2018

Cite

APA Türkücü, T., & Börklü, H. R. (2018). Tersine Mühendislik Yaklaşımına Dayalı Yeni Bir İmalat İçin Tasarım İşlem Modeli. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(1), 91-104. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.327479

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526