Research Article
BibTex RIS Cite

Bir otomobil montaj işletmesinde enerji verimliliği artırıcı çözümlerin irdelenmesi

Year 2018, , 149 - 162, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.331104

Abstract

Bu çalışmada, bir
otomobil montaj tesisinin (Gövde (BiW) üretimi, boyama işlemi, şase ve aksesuar
montaj işlemleri) enerji tüketimleri incelenmiştir. İmalat sürecinde enerjinin
yoğun kullanıldığı alanlar tespit edilmiştir. Tesis genelinde, enerji tüketilen
sistemlerde (boyahane, kurutma fırınları, basınçlı hava, ısıtma ve soğutma
sistemleri) verimliliğin artırılması için yapılabilecek çalışmalar ve otomobil
montaj tesisinde kullanılan teknolojilerin enerji verimliliğine etkisi
incelenmiştir. Tesiste gerçekleşen enerji tüketiminin büyük kısmı boyahanede
gerçekleşmektedir. İncelenen tesiste kullanılan elektrik enerjisinin yaklaşık
%50’si ve doğalgazın yaklaşık %70’i boyahanede tüketilmektedir. İncelenen tesis,
200.000 araç/yıl üretim kapasitesine sahip haftada 6 gün ve günde 3 vardiya
çalışmaktadır. Tesiste, araç başına özgül enerji tüketimi (SET) elektrik
enerjisi için (SETe) 275 kWh, doğalgaz için (SETdg) 578
kWh olmak üzere toplamda 853 kWh olarak hesaplanmıştır. Yapılan incelemeler
sonucunda tespit edilen tasarruf potansiyelleri hayata geçirildiğinde tesisin
özgül enerji tüketimi elektrik enerjisi için %1 ve ısıl enerji için %5,7 azalma
sağlanacaktır.

References

  • [1] “Climate Change: Basic Information,” 2017. [Online]. Available: https://www.epa.gov/climatechange/climate-change-basic-information. [Erişim Tarihi: 26-Nisan-2017].
  • [2] P. Enderle, O. Nowak, J. Kvas, Potential alternative for water and energy savings in the automotive industry: Case study for an Austrian automotive supplier. J. Clean. Prod, 34 (2012) 146–152
  • [3] A. Fysikopoulos, D. Anagnostakis, K. Salonitis, G. Chryssolouris, An empirical study of the energy consumption in automotive assembly. Procedia CIRP, 3:1 (2012) 477–482.
  • [4] J. L. Rivera, T. Reyes-Carrillo, A framework for environmental and energy analysis of the automobile painting process. Procedia CIRP, 15 (2014) 171–175.
  • [5] S. C. Oh, A. J. Hildreth, Estimating the technical improvement of energy efficiency in the automotive industry-stochastic and deterministic frontier benchmarking approaches. Energies, 7:9 (2014) 6196–6222.
  • [6] I. Schlei-peters et al., Assessing Combined Water-Energy-Efficiency Measures in the Automotive Industry. Procedia CIRP, 29 (2015) 50–55.
  • [7] Various, Technology Roadmap for Energy Reduction in Automotive Manufacturing. USA Department of Energy, (2008).
  • [8] C. Galitsky, E. Worrell, Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry. An Energy Star Guide for Energy and Plant Managers, 2008.
  • [9] J. L. Rivera, T. Reyes-Carrillo, A life cycle assessment framework for the evaluation of automobile paint shops. J. Clean. Prod., 115 (2016) 75–87.
  • [10] B. Leven, C. Weber, Energy efficiency in innovative industries: Application and benefits of energy indicators in the automobile industry. Proc. ACEEE Summer Study Energy Effic. Ind., 1 (2001) 67–75.
  • [11] P. Dehning, S. Thiede, M. Mennenga, C. Herrmann, Factors influencing the energy intensity of automotive manufacturing plants. J. Clean. Prod., 142 (2017) 2305–2314, 2017.
  • [12] D. Kaya, P. Phelan, D. Chau, H. Ibrahim Sarac, Energy conservation in compressed-air systems. Int. J. Energy Res., 26:9 (2002) 837–849.
  • [13] S. Sapmaz et al., Selection of compressors for petrochemical industry in terms of reliability, energy consumption and maintenance costs examining different scenarios. Energy Explor. Exploit. 33:1 (2015) 43–62.
  • [14] J. Domnick, D. Gruseck, K. Pulli, A. Scheibe, Q. Ye, F. Brinckmann, Investigations of the drying process of a water based paint film for automotive applications. Chem. Eng. Process. Process Intensif., 50:5–6 (2011) 495–502.
  • [15] P. P. Rao, A heat exchanger analogy of automotive paint ovens. Appl. Therm. Eng., 61:2 (2013) 381–392.
  • [16] S. Niamsuwan, P. Kittisupakorn, and A. Suwatthikul, “Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant,” Appl. Energy, 156 (2015) 465–477.
Year 2018, , 149 - 162, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.331104

Abstract

References

  • [1] “Climate Change: Basic Information,” 2017. [Online]. Available: https://www.epa.gov/climatechange/climate-change-basic-information. [Erişim Tarihi: 26-Nisan-2017].
  • [2] P. Enderle, O. Nowak, J. Kvas, Potential alternative for water and energy savings in the automotive industry: Case study for an Austrian automotive supplier. J. Clean. Prod, 34 (2012) 146–152
  • [3] A. Fysikopoulos, D. Anagnostakis, K. Salonitis, G. Chryssolouris, An empirical study of the energy consumption in automotive assembly. Procedia CIRP, 3:1 (2012) 477–482.
  • [4] J. L. Rivera, T. Reyes-Carrillo, A framework for environmental and energy analysis of the automobile painting process. Procedia CIRP, 15 (2014) 171–175.
  • [5] S. C. Oh, A. J. Hildreth, Estimating the technical improvement of energy efficiency in the automotive industry-stochastic and deterministic frontier benchmarking approaches. Energies, 7:9 (2014) 6196–6222.
  • [6] I. Schlei-peters et al., Assessing Combined Water-Energy-Efficiency Measures in the Automotive Industry. Procedia CIRP, 29 (2015) 50–55.
  • [7] Various, Technology Roadmap for Energy Reduction in Automotive Manufacturing. USA Department of Energy, (2008).
  • [8] C. Galitsky, E. Worrell, Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry. An Energy Star Guide for Energy and Plant Managers, 2008.
  • [9] J. L. Rivera, T. Reyes-Carrillo, A life cycle assessment framework for the evaluation of automobile paint shops. J. Clean. Prod., 115 (2016) 75–87.
  • [10] B. Leven, C. Weber, Energy efficiency in innovative industries: Application and benefits of energy indicators in the automobile industry. Proc. ACEEE Summer Study Energy Effic. Ind., 1 (2001) 67–75.
  • [11] P. Dehning, S. Thiede, M. Mennenga, C. Herrmann, Factors influencing the energy intensity of automotive manufacturing plants. J. Clean. Prod., 142 (2017) 2305–2314, 2017.
  • [12] D. Kaya, P. Phelan, D. Chau, H. Ibrahim Sarac, Energy conservation in compressed-air systems. Int. J. Energy Res., 26:9 (2002) 837–849.
  • [13] S. Sapmaz et al., Selection of compressors for petrochemical industry in terms of reliability, energy consumption and maintenance costs examining different scenarios. Energy Explor. Exploit. 33:1 (2015) 43–62.
  • [14] J. Domnick, D. Gruseck, K. Pulli, A. Scheibe, Q. Ye, F. Brinckmann, Investigations of the drying process of a water based paint film for automotive applications. Chem. Eng. Process. Process Intensif., 50:5–6 (2011) 495–502.
  • [15] P. P. Rao, A heat exchanger analogy of automotive paint ovens. Appl. Therm. Eng., 61:2 (2013) 381–392.
  • [16] S. Niamsuwan, P. Kittisupakorn, and A. Suwatthikul, “Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant,” Appl. Energy, 156 (2015) 465–477.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Fatma Çanka Kılıç 0000-0002-4942-2699

Muharrem Eyidoğan This is me 0000-0002-7235-2633

Süleyman Sapmaz 0000-0002-9475-5986

Publication Date March 30, 2018
Submission Date July 27, 2017
Published in Issue Year 2018

Cite

APA Çanka Kılıç, F., Eyidoğan, M., & Sapmaz, S. (2018). Bir otomobil montaj işletmesinde enerji verimliliği artırıcı çözümlerin irdelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(1), 149-162. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.331104

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526