Research Article
BibTex RIS Cite

ENDÜSTRİYEL UYGULAMALAR İÇİN ANALOG GÖSTERGE OKUYUCU SİSTEMİ

Year 2018, , 928 - 937, 30.12.2018
https://doi.org/10.29109/gujsc.439795

Abstract

Version:1.0
StartHTML:0000000220
EndHTML:0000040789
StartFragment:0000038569
EndFragment:0000040749
SourceURL:file:///\\VBOXSVR\Dropbox\personal\akademik\makale_calisma\2018\gazi_analog_ibre_okuma\gazi_format.docx













Endüstriyel
uygulamalarda, algılayıcı verilerinin sürekli olarak takip edilmesi denetim
sistemlerinin performansı açısından oldukça önemlidir. Endüstriyel sistemlerin
denetiminde ise görsel denetim sistemlerinin kullanımı oldukça yaygındır. Görsel
denetim sistemlerinin temel amacı, endüstriyel uygulamalardaki üretim
kalitesinin ölçülmesini ve üretim hattının kalitesinin kontrol altında
tutulmasını sağlamaktır. Bu çalışma kapsamında, endüstride çokça yer alan eski
tip analog göstergelerdeki değerlerin gerçek zamanlı olarak takip edilmesini
sağlayacak bir sistem önerilmektedir. Eski tip analog göstergeler, ölçüm
bilgisini sayısal biçimde denetim merkezine gönderememektedir. Bu tip
göstergelerin değerleri, bir insan tarafından belirli zaman aralıklarında
kontrol edilerek toplanmaktadır. Dolayısıyla, toplanan bu verilerin denetimde
kullanılması için insan gözetimi gerekmektedir. Önerilen görsel denetim sistemi,
analog göstergelerin değerlerinin sayısal veriye dönüştürülmesini sağlayarak,
insan gözetimine olan ihtiyacı ortadan kaldırmayı amaçlamaktadır. Böylece,
gösterge verilerinin tek bir noktadan kontrol edilebilmesi ve üretim hattında
oluşabilecek hataların anında tespit edilebilmesi mümkün olacaktır. Önerilen
sistem, farklı tipteki analog göstergelerde, başlangıç noktasını, bitiş
noktasını ve ibrenin yönelimini bularak gösterilen değeri hesaplamaktadır. Gerçekleştirilen
sistem, bir fabrikadan ve internetten elde edilmiş farklı tipteki göstergelere
ait görüntüler üzerinde test edilmiştir. Bu görüntüler kullanılarak test edilen
analog gösterge okuma sisteminin, %94 oranında bir performans ile doğru
değerleri okuduğu gösterilmiştir.

References

  • S. Huang, Y. Pan, Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66 (2015), 1-10.
  • U. Sanver, E. Yavuz and C. Eyupoglu, An image processing application to detect faulty bottle packaging. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, (2017) 986-989.
  • S. K. Sahoo, S. Pine, S. K. Mohapatra and B. B. Choudhury, An effective quality inspection system using image processing techniques. 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, (2015) 1426-1430.
  • R. Shanmugamani, M. Sadique, B. Ramamoorthy, Detection and classification of surface defects of gun barrels using computer vision and machine learning. Measurement, 60 (2015) 222-230.
  • A. Shaukat, Y. Gao, J. A. Kuo, B. A. Bowen, P. E. Mort, Visual classification of waste material for nuclear decommissioning. Robotics and Autonomous Systems, 75, Part B (2016) 365-378W.
  • N. K. Verma, T. Sharma, S. D. Rajurkar, R. Ranjan and A. Salour, Vision based counting of texture-less objects using shape and color features. 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, (2016) 253-258.
  • Nie, Z., Hung, M.H. and Huang, J., A novel algorithm of rebar counting on Conveyor Belt based on machine vision. J Inf Hiding Multimed Sign Process, 7(2), (2016) 425-437.
  • X. X. Xing, L. Fu, and W. W. Shang, Research on an automatic counting system of soft fibrils collection. 2nd International Conference on Computer Science and Network Technology (ICCSNT), (2012).
  • M. K. Gellaboina, G. Swaminathan and V. Venkoparao, Analog dial gauge reader for handheld devices. 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, (2013) 1147-1150.
  • B. Hemming and H. Lehto, Calibration of Dial Indicators using Machine Vision. In Meas. Sci. Technol., 13 (2002) 45-49.
  • Hai ping Feng and Jun. Zhao, Application Research of Computer Vision in the Auto-Calibration of Dial Gauges. International Conference on Computer Science and Software Engineering, 2 (2008) 845-848.
  • S. Zhao, B. Li, J. Yuan, and G. Cui, Research on Remote Meter Automatic Reading Based on Computer Vision. IEEE/PES Transmission and Distribution Conf.& Exhibition: Asia and Pacific Dalian, (2005).
  • Souare, Moussa, Efficient Way of Reading Rotary Dial Utility Meter Using Image Processing. MS Thesis, 2010.

ANALOGUE INDICATOR READER SYSTEM FOR INDUSTRIAL APPLICATIONS

Year 2018, , 928 - 937, 30.12.2018
https://doi.org/10.29109/gujsc.439795

Abstract

References

  • S. Huang, Y. Pan, Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66 (2015), 1-10.
  • U. Sanver, E. Yavuz and C. Eyupoglu, An image processing application to detect faulty bottle packaging. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, (2017) 986-989.
  • S. K. Sahoo, S. Pine, S. K. Mohapatra and B. B. Choudhury, An effective quality inspection system using image processing techniques. 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, (2015) 1426-1430.
  • R. Shanmugamani, M. Sadique, B. Ramamoorthy, Detection and classification of surface defects of gun barrels using computer vision and machine learning. Measurement, 60 (2015) 222-230.
  • A. Shaukat, Y. Gao, J. A. Kuo, B. A. Bowen, P. E. Mort, Visual classification of waste material for nuclear decommissioning. Robotics and Autonomous Systems, 75, Part B (2016) 365-378W.
  • N. K. Verma, T. Sharma, S. D. Rajurkar, R. Ranjan and A. Salour, Vision based counting of texture-less objects using shape and color features. 2016 11th International Conference on Industrial and Information Systems (ICIIS), Roorkee, (2016) 253-258.
  • Nie, Z., Hung, M.H. and Huang, J., A novel algorithm of rebar counting on Conveyor Belt based on machine vision. J Inf Hiding Multimed Sign Process, 7(2), (2016) 425-437.
  • X. X. Xing, L. Fu, and W. W. Shang, Research on an automatic counting system of soft fibrils collection. 2nd International Conference on Computer Science and Network Technology (ICCSNT), (2012).
  • M. K. Gellaboina, G. Swaminathan and V. Venkoparao, Analog dial gauge reader for handheld devices. 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, (2013) 1147-1150.
  • B. Hemming and H. Lehto, Calibration of Dial Indicators using Machine Vision. In Meas. Sci. Technol., 13 (2002) 45-49.
  • Hai ping Feng and Jun. Zhao, Application Research of Computer Vision in the Auto-Calibration of Dial Gauges. International Conference on Computer Science and Software Engineering, 2 (2008) 845-848.
  • S. Zhao, B. Li, J. Yuan, and G. Cui, Research on Remote Meter Automatic Reading Based on Computer Vision. IEEE/PES Transmission and Distribution Conf.& Exhibition: Asia and Pacific Dalian, (2005).
  • Souare, Moussa, Efficient Way of Reading Rotary Dial Utility Meter Using Image Processing. MS Thesis, 2010.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Original Articles
Authors

Murat Peker 0000-0001-9877-5493

Publication Date December 30, 2018
Submission Date July 2, 2018
Published in Issue Year 2018

Cite

APA Peker, M. (2018). ENDÜSTRİYEL UYGULAMALAR İÇİN ANALOG GÖSTERGE OKUYUCU SİSTEMİ. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(4), 928-937. https://doi.org/10.29109/gujsc.439795

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526