Research Article
BibTex RIS Cite

Manyetik Rezonansa Dayalı Kablosuz Enerji Transferi İçin Yeni Bir Nüve Geometrisi

Year 2019, , 1012 - 1024, 24.12.2019
https://doi.org/10.29109/gujsc.598300

Abstract

Kablosuz
Enerji Transferi (KET) uygulamalarında en önemli hedef, verimli bir enerji
transferi sağlamaktır. KET günümüzde cep telefonu şarjı, elektrikli araç şarjı,
aydınlatma, kontrol vb. birçok alanda uygulanmaktadır. Yüksek verimi, çevresel
olumsuz etkilerinin az olması gibi avantajlarından dolayı, manyetik rezonans yöntemi
en çok tercih edilen KET yöntemidir. Manyetik rezonansa dayalı KET
sistemlerinde, sistem verimini artırmak için yüksek verimli bir KET
transformatörü kullanılmalıdır. Bu çalışmada manyetik
rezonansa dayalı bir KET sisteminin tasarımı yapılmıştır. Bu amaçla öncelikle
hibrit (hava-ferrit) nüveli özgün bir transformatör tasarlanmıştır.
Transformatörün Dairesel-Dilimli Parçalı(D-DP) ferrit nüve yapısı ilk defa bu
çalışmada kullanılmıştır. Transformatörün sargıları litz iletken olarak
tasarlanmıştır. Transformatörde kaçak akıları en aza indirmek amacıyla
sargıların dış yüzeylerine alüminyum levhalar kullanılarak manyetik akı
sargılar arasında kalmaya zorlanmıştır. Tasarlanan transformatörün sonlu
elemanlar yöntemi ile manyetik analizleri yapılmış ve sonuçları nümerik
hesaplarla doğrulanmıştır. Manyetik analiz sonuçları kullanılarak, KET transformatörü
simülasyon devresi üzerinden yüklenmiş ve % 97 verim ile elektrik enerjisi
transferi gerçekleştirilmiştir. Elde edilen sonuçlar D-DP ferrit nüve yapısının
KET transformatörü uygulamalarında başarı ile kullanılabileceğini göstermiştir.

References

  • Referans1: E. Aydın, A. Pashei, E. Yıldırız, M. T. Aydemir, “Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp.1-6, 2018.
  • Referans2: A. Pashei, E. Aydın, M. Polat, E. Yıldırız, M. T. Aydemir, “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri,” EMO Bilimsel Dergi, vol. 6, no 11, pp. 1-12, 2016.
  • Referans3: J. Shin, S. Shin,Y. Kim,S. Ahn,S. Lee, G. Jung, S.-J. Jeon,D.-H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1179-1192, 2013.
  • Referans4: T. Imura, Y. Hori, “Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, October 2011, pp.4746-4752.
  • Referans5: H. Takanashi, Y. Sato, Y. Kaneko, S. Abe, T. Yasuda, “A large air gap 3 kW wireless power transfer system for electric vehicles,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 269-274.
  • Referans6: A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
  • Referans7: M. Cederlöf. “Inductive Charging of Electrical Vehicles,” Stockholm: KTH, School of Electrical Engineering (EES), Electromagnetic Engineering”, Master Thesis, 2012.
  • Referans8: A. Karalis, J.D. Joannopoulos, M Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics, vol. 323, no. 1,pp. 34–48, 2008.
  • Referans9: A. L. Máñez. “Optimization of Inductive Resonanat Coupling Links for low Power and Mid-Range Wireless Power Transfer”, Master Thesis, 2014.
  • Referans10: A. Ağçal, N. Bekiroğlu, S. Özçıra, ”Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp. 67-73, 2018.
  • Referans11: R. Zhang, C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013.
  • Referans12: J. M. Miller, O. C. Onar, M. Chinthavali, “Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 147-162, 2014.
  • Referans13: K. Aditya, S. S. Williamson, “Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3973-3982, 2018.
  • Referans14: S. Ludvik, P. Mojca, B. V. Boštjan, “Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer,” International Journal of Applied Electromagnetics and Mechanics, vol. 49, no. 1, pp. 145-155, 2015.
  • Referans15: T. Diekhans , R. W. De Doncker, “A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6320-6328, 2015.
  • Referans16: C. Panchal, S. Stegen, J. Lu, “Review of static and dynamic wireless electric vehicle charging system,” Engineering Science and Technology, an International Journal, vol. 21, no. 5, pp. 922-937, 2018.
  • Referans17: B. Fincan, Ö. Üstün, “A study on comparing analytical methods for coil design in high frequency wireless energy transfer,” 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), Daejeon, South Korea: IEEE. 2015.
  • Referans18: Y.Tezcan, H. Ünal, T. Sürgevil, M. Boztepe, “Optimum Coil Design Considering Skin and Proximity Effects for a Wireless Battery Charger of Electric Vehicle,” 2017 World Electro Mobility Conference, 2017.
  • Referans19: A. P. Sample, D. T. Meyer, J. R. Smith, “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2010.
  • Referans20: T. Imura, “Study on maximum air-gap and efficiency of Magnetic Resonant Coupling for Wireless Power Transfer using Equivalent Circuit,” 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010.
  • Referans21: G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015.
  • Referans22: S. Samanta, R. A. Kumar, “Small-Signal Modeling and Closed-Loop Control of a Parallel–Series/Series Resonant Converter for Wireless Inductive Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 172-182, 2018.
  • Referans23: O. Kaplan “Kablosuz Güç Aktarımı İçin Karşılıklı Endüktans Hesaplama Aracının Geliştirilmesi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 7, no. 1, pp. 37–48, 2019.
  • Referans24: J. Barranger, “Hysteresis and Eddy-Current Losses of a Transformer lamination Vieved as an application of the poynting Theorem,” NASA Technical Note, Cleveland, Ohio, 1965.
  • Referans25: M. Budhia, G. A. Covic, J. T. Boys, “Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096 – 3108, 2011.
  • Referans26: K. Ogawa, N. Oodachi, S. Obayashi, H. Shoki, “A study of efficiency improvement of wireless power transfer by impedance matching,” 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 2012.
  • Referans27: S. Y. Choi, B. W. Gu, S. Y. Jeong, C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 18-36, 2014.
  • Referans28: S. Li, C. C. Mi, “Wireless Power Transfer for Electric Vehicle Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, 2014.
  • Referans29: O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, L. E. Seiber, “Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative,” 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2013.
Year 2019, , 1012 - 1024, 24.12.2019
https://doi.org/10.29109/gujsc.598300

Abstract

References

  • Referans1: E. Aydın, A. Pashei, E. Yıldırız, M. T. Aydemir, “Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp.1-6, 2018.
  • Referans2: A. Pashei, E. Aydın, M. Polat, E. Yıldırız, M. T. Aydemir, “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri,” EMO Bilimsel Dergi, vol. 6, no 11, pp. 1-12, 2016.
  • Referans3: J. Shin, S. Shin,Y. Kim,S. Ahn,S. Lee, G. Jung, S.-J. Jeon,D.-H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1179-1192, 2013.
  • Referans4: T. Imura, Y. Hori, “Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, October 2011, pp.4746-4752.
  • Referans5: H. Takanashi, Y. Sato, Y. Kaneko, S. Abe, T. Yasuda, “A large air gap 3 kW wireless power transfer system for electric vehicles,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 269-274.
  • Referans6: A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, 2007.
  • Referans7: M. Cederlöf. “Inductive Charging of Electrical Vehicles,” Stockholm: KTH, School of Electrical Engineering (EES), Electromagnetic Engineering”, Master Thesis, 2012.
  • Referans8: A. Karalis, J.D. Joannopoulos, M Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Annals of Physics, vol. 323, no. 1,pp. 34–48, 2008.
  • Referans9: A. L. Máñez. “Optimization of Inductive Resonanat Coupling Links for low Power and Mid-Range Wireless Power Transfer”, Master Thesis, 2014.
  • Referans10: A. Ağçal, N. Bekiroğlu, S. Özçıra, ”Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 3, pp. 67-73, 2018.
  • Referans11: R. Zhang, C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013.
  • Referans12: J. M. Miller, O. C. Onar, M. Chinthavali, “Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 147-162, 2014.
  • Referans13: K. Aditya, S. S. Williamson, “Design Guidelines to Avoid Bifurcation in a Series–Series Compensated Inductive Power Transfer System,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3973-3982, 2018.
  • Referans14: S. Ludvik, P. Mojca, B. V. Boštjan, “Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer,” International Journal of Applied Electromagnetics and Mechanics, vol. 49, no. 1, pp. 145-155, 2015.
  • Referans15: T. Diekhans , R. W. De Doncker, “A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6320-6328, 2015.
  • Referans16: C. Panchal, S. Stegen, J. Lu, “Review of static and dynamic wireless electric vehicle charging system,” Engineering Science and Technology, an International Journal, vol. 21, no. 5, pp. 922-937, 2018.
  • Referans17: B. Fincan, Ö. Üstün, “A study on comparing analytical methods for coil design in high frequency wireless energy transfer,” 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), Daejeon, South Korea: IEEE. 2015.
  • Referans18: Y.Tezcan, H. Ünal, T. Sürgevil, M. Boztepe, “Optimum Coil Design Considering Skin and Proximity Effects for a Wireless Battery Charger of Electric Vehicle,” 2017 World Electro Mobility Conference, 2017.
  • Referans19: A. P. Sample, D. T. Meyer, J. R. Smith, “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2010.
  • Referans20: T. Imura, “Study on maximum air-gap and efficiency of Magnetic Resonant Coupling for Wireless Power Transfer using Equivalent Circuit,” 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010.
  • Referans21: G. Buja, M. Bertoluzzo, and K. N. Mude, “Design and Experimentation of WPT Charger for Electric City Car,” IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015.
  • Referans22: S. Samanta, R. A. Kumar, “Small-Signal Modeling and Closed-Loop Control of a Parallel–Series/Series Resonant Converter for Wireless Inductive Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 172-182, 2018.
  • Referans23: O. Kaplan “Kablosuz Güç Aktarımı İçin Karşılıklı Endüktans Hesaplama Aracının Geliştirilmesi,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol. 7, no. 1, pp. 37–48, 2019.
  • Referans24: J. Barranger, “Hysteresis and Eddy-Current Losses of a Transformer lamination Vieved as an application of the poynting Theorem,” NASA Technical Note, Cleveland, Ohio, 1965.
  • Referans25: M. Budhia, G. A. Covic, J. T. Boys, “Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096 – 3108, 2011.
  • Referans26: K. Ogawa, N. Oodachi, S. Obayashi, H. Shoki, “A study of efficiency improvement of wireless power transfer by impedance matching,” 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 2012.
  • Referans27: S. Y. Choi, B. W. Gu, S. Y. Jeong, C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 18-36, 2014.
  • Referans28: S. Li, C. C. Mi, “Wireless Power Transfer for Electric Vehicle Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, 2014.
  • Referans29: O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, L. E. Seiber, “Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative,” 2013 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2013.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Zafer Doğan 0000-0002-7953-0578

Mustafa Özsoy 0000-0002-7466-7743

İres İskender 0000-0003-1968-1857

Publication Date December 24, 2019
Submission Date July 29, 2019
Published in Issue Year 2019

Cite

APA Doğan, Z., Özsoy, M., & İskender, İ. (2019). Manyetik Rezonansa Dayalı Kablosuz Enerji Transferi İçin Yeni Bir Nüve Geometrisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 1012-1024. https://doi.org/10.29109/gujsc.598300

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526