Research Article
BibTex RIS Cite

TIG yöntemiyle üretilen Fe-Cr-C/M(Nb,Ti)C kompozit kaplamalarında mikroyapısal Değişimler

Year 2020, , 51 - 63, 23.03.2020
https://doi.org/10.29109/gujsc.637815

Abstract

Fe-Cr-C, Fe-Cr-C/FeNb
ve Fe-Cr-C/TiC kaplamalarına M7C3 ve M(Nb,Ti)C karbürlerinin
etkisini incelemek için gaz tungsten ark tekniği kullanılarak orta karbonlu çelik
altlık yüzeyinde hazırlandı ve elde edilen kompozit kaplamaların mikroyapı ve
özellikleri optik mikroskop ve taramalı elektron mikroskobu kullanılarak
incelendi. Fe-Cr-C kaplamalarında mikroyapıda hegzagonal ve sivri uçlu M7C3
karbürleri oluşurken, FeNb ve TiC ilaveli kaplama tabakalarında
g-(Fe,Cr) ötektik matriste birincil M7C3
karbürleriyle birlikte üçgen görünümlü NbC ve dörtgen görünümlü TiC taneleriyle
katılaşma meydana geldiği belirlendi.

References

  • C.K. Sahoo, L. Soni, M. Masanta, Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process, Surface & Coatings Technology 307 (2016) 17–27
  • X.J. Wu, J.D. Xing, H.G. Fu, X.H. Zhi, Mater. Sci. Eng. A, 457 (2007), pp. 180-185
  • H. Berns, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Wear, 254 (2003), p. 47-54
  • J.D. Xing, Y.M. Gao, E.Z. Wang, C.G. Bao, Wear, 252 (2002), p. 755
  • R. Veinthal, F. Sergejev, A. Zikin, R. Tarbe, J. Hornung, Abrasive impact wear and surface fatigue wear behaviour of Fe–Cr–C PTA overlays, Wear, 301, 1–2, (2013), pp. 102-108
  • C. Fan, M.C. Chen, C.M. Chang, W. Wu, Surf. Coat. Technol., 201 (2006), p. 908
  • L. Lu, H. Soda, A. McLean, Materials Science and Engineering A, 347 (2003), pp. 214-222
  • J. Xu, Y.D. Kan, W.J. Liu, In-situ synthetic TiB2 particulate reinforced metal matrix composite coating on AA2024 aluminum alloy by laser cladding technology, Surf. Rev. Lett, 12 (2005), 561-567
  • X. Xu, G. Mi, L. X., P. Jiang, X. Shao, C. Wang, Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740 (2018), pp. 16-27
  • G. Rasool, M.M. Stack, Wear maps for TiC composite based coatings deposited on 303 stainless steel, Tribol. Int., 74 (2014), 93-102
  • Z. Wang, X. Zhou, G. Zhao, Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating, Transactions of Nonferrous Metals Society of China, 18, 4 (2008), pp. 831-835
  • A. Monfared, A.H. Kokabi, S. Asgari, Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process, Mater. Chem. Phys., 137 (2013), pp.959-966
  • S. Mridha, Titanium nitride layer formation by TIG surface melting in a reactive environment, J. Mater. Proc. Technol., 168 (2005), pp.471-477
  • M. Zhang, M. L. Jing, C. S. Wang, L. Ren, Min Fang, Microstructure and tribology properties of in-situ MC(M:Ti,Nb) coatings prepared via PTA technology, Vacuum, Volume 160, February 2019, pp. 264-271
  • X.-N. Wang, et al., Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding. Materials Letters, 206 (2017), pp. 143-145
  • C.-M. Chang, L.-H. Chen, C.-M. Lin, J.-H. Chen, C.-M. Fan, W.Wu, Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents, Surface and Coatings Technology, 205, 2 (2010), pp. 245-250
  • A. Leško, E. Navara, Microstructural characterization of high-carbon ferrochromium, Mater. Charact., 36 (1996), pp. 349-356
  • C.-M. Chang, Y.-C. Chen, W. Wu, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Tribology International, 43, 5–6 (2010), pp.929-934
  • S. Chatterjee , TK Pal, Wear behaviour of hardfacing deposits on cast iron, Wear 255 (2003) 417-425
  • S. Liu, Y. Zhou, X. Xing, J. Wang, Y. Yang, Q. Yang, Agglomeration model of (Fe,Cr)7C3 carbide in hypereutectic Fe-Cr-C alloy, Materials Letters, 183 (2016), pp. 272-276
  • C.-M. Chang, L.-H. Chen, C.-M. Lin, J.-H. Chen, W. Wu, Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents, Surface and Coatings Technology, 205, 2 (2010), pp.245-250
  • S. Ma, J. Xing, Y. He, Y. Li, Z. Huang, G. Liu, Q. Geng, Microstructure and crystallography of M7C3 carbide in chromium cast iron, Materials Chemistry and Physics, 161, (2015), pp. 65-73
  • J. Yang, J. Tian, F. Hao, T. Dan, X. Ren, Y. Yang, Q. Yang, Microstructure and wear resistance of the hypereutectic Fe–Cr–C alloy hardfacing metals with different La2O3 additives, Applied Surface Science, 289 (2014), pp.437-444
  • Y. Wang, J. Gou, R. Chu, D. Zhen, S. Liu, The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys, Tribology International, 103, (2016), pp. 102-112
  • J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, M. Kirchgaßner, Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings, Materials Science and Engineering: A, 576 (2013), pp. 243-251
  • Q. Li, Y. Lei, H. Fu, Growth Characteristics and Reinforcing Behavior of In-situ NbCp in Laser Cladded Fe-based Composite Coating, Journal of Materials Science & Technology, 31, 7 (2015), pp. 766-772
  • Y F Zhou, Y L Yang, J Yang, P F Zhang, Wear resistance of hypereutectic Fe–Cr–C hardfacing coatings with in situ formed TiC, Surface Engineering, 29, (2013), 5
  • X. Zhi, J. Xing, H. Fu, Y. Gao, Effect of titanium on the as-cast microstructure of hypereutectic high chromium cast iron, Mater. Charact., 59 (2008), pp. 1221-1226
  • C.M. Lin, H.H. Lai, J.C. Kuo, W. Wu, Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys, Mater. Charact., 62 (2011), pp. 1124-1133
Year 2020, , 51 - 63, 23.03.2020
https://doi.org/10.29109/gujsc.637815

Abstract

References

  • C.K. Sahoo, L. Soni, M. Masanta, Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process, Surface & Coatings Technology 307 (2016) 17–27
  • X.J. Wu, J.D. Xing, H.G. Fu, X.H. Zhi, Mater. Sci. Eng. A, 457 (2007), pp. 180-185
  • H. Berns, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Wear, 254 (2003), p. 47-54
  • J.D. Xing, Y.M. Gao, E.Z. Wang, C.G. Bao, Wear, 252 (2002), p. 755
  • R. Veinthal, F. Sergejev, A. Zikin, R. Tarbe, J. Hornung, Abrasive impact wear and surface fatigue wear behaviour of Fe–Cr–C PTA overlays, Wear, 301, 1–2, (2013), pp. 102-108
  • C. Fan, M.C. Chen, C.M. Chang, W. Wu, Surf. Coat. Technol., 201 (2006), p. 908
  • L. Lu, H. Soda, A. McLean, Materials Science and Engineering A, 347 (2003), pp. 214-222
  • J. Xu, Y.D. Kan, W.J. Liu, In-situ synthetic TiB2 particulate reinforced metal matrix composite coating on AA2024 aluminum alloy by laser cladding technology, Surf. Rev. Lett, 12 (2005), 561-567
  • X. Xu, G. Mi, L. X., P. Jiang, X. Shao, C. Wang, Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740 (2018), pp. 16-27
  • G. Rasool, M.M. Stack, Wear maps for TiC composite based coatings deposited on 303 stainless steel, Tribol. Int., 74 (2014), 93-102
  • Z. Wang, X. Zhou, G. Zhao, Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating, Transactions of Nonferrous Metals Society of China, 18, 4 (2008), pp. 831-835
  • A. Monfared, A.H. Kokabi, S. Asgari, Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process, Mater. Chem. Phys., 137 (2013), pp.959-966
  • S. Mridha, Titanium nitride layer formation by TIG surface melting in a reactive environment, J. Mater. Proc. Technol., 168 (2005), pp.471-477
  • M. Zhang, M. L. Jing, C. S. Wang, L. Ren, Min Fang, Microstructure and tribology properties of in-situ MC(M:Ti,Nb) coatings prepared via PTA technology, Vacuum, Volume 160, February 2019, pp. 264-271
  • X.-N. Wang, et al., Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding. Materials Letters, 206 (2017), pp. 143-145
  • C.-M. Chang, L.-H. Chen, C.-M. Lin, J.-H. Chen, C.-M. Fan, W.Wu, Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents, Surface and Coatings Technology, 205, 2 (2010), pp. 245-250
  • A. Leško, E. Navara, Microstructural characterization of high-carbon ferrochromium, Mater. Charact., 36 (1996), pp. 349-356
  • C.-M. Chang, Y.-C. Chen, W. Wu, Microstructural and abrasive characteristics of high carbon Fe–Cr–C hardfacing alloy, Tribology International, 43, 5–6 (2010), pp.929-934
  • S. Chatterjee , TK Pal, Wear behaviour of hardfacing deposits on cast iron, Wear 255 (2003) 417-425
  • S. Liu, Y. Zhou, X. Xing, J. Wang, Y. Yang, Q. Yang, Agglomeration model of (Fe,Cr)7C3 carbide in hypereutectic Fe-Cr-C alloy, Materials Letters, 183 (2016), pp. 272-276
  • C.-M. Chang, L.-H. Chen, C.-M. Lin, J.-H. Chen, W. Wu, Microstructure and wear characteristics of hypereutectic Fe–Cr–C cladding with various carbon contents, Surface and Coatings Technology, 205, 2 (2010), pp.245-250
  • S. Ma, J. Xing, Y. He, Y. Li, Z. Huang, G. Liu, Q. Geng, Microstructure and crystallography of M7C3 carbide in chromium cast iron, Materials Chemistry and Physics, 161, (2015), pp. 65-73
  • J. Yang, J. Tian, F. Hao, T. Dan, X. Ren, Y. Yang, Q. Yang, Microstructure and wear resistance of the hypereutectic Fe–Cr–C alloy hardfacing metals with different La2O3 additives, Applied Surface Science, 289 (2014), pp.437-444
  • Y. Wang, J. Gou, R. Chu, D. Zhen, S. Liu, The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys, Tribology International, 103, (2016), pp. 102-112
  • J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, M. Kirchgaßner, Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings, Materials Science and Engineering: A, 576 (2013), pp. 243-251
  • Q. Li, Y. Lei, H. Fu, Growth Characteristics and Reinforcing Behavior of In-situ NbCp in Laser Cladded Fe-based Composite Coating, Journal of Materials Science & Technology, 31, 7 (2015), pp. 766-772
  • Y F Zhou, Y L Yang, J Yang, P F Zhang, Wear resistance of hypereutectic Fe–Cr–C hardfacing coatings with in situ formed TiC, Surface Engineering, 29, (2013), 5
  • X. Zhi, J. Xing, H. Fu, Y. Gao, Effect of titanium on the as-cast microstructure of hypereutectic high chromium cast iron, Mater. Charact., 59 (2008), pp. 1221-1226
  • C.M. Lin, H.H. Lai, J.C. Kuo, W. Wu, Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys, Mater. Charact., 62 (2011), pp. 1124-1133
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Soner Buytoz 0000-0003-1509-8648

Publication Date March 23, 2020
Submission Date October 24, 2019
Published in Issue Year 2020

Cite

APA Buytoz, S. (2020). TIG yöntemiyle üretilen Fe-Cr-C/M(Nb,Ti)C kompozit kaplamalarında mikroyapısal Değişimler. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(1), 51-63. https://doi.org/10.29109/gujsc.637815

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526