Bağıl Nem Oranını Algılamaya Yönelik Soğurucu Tabanlı Metamalzeme Sensör
Year 2020,
, 561 - 571, 27.09.2020
Mustafa Suphi Gülsu
,
Fulya Bağcı
,
Barış Akaoğlu
Abstract
Bu çalışmada yansıma spektrumunun izlenmesi ile ortamdaki bağıl nem oranını algılamaya yönelik soğurucu tabanlı bir metamalzeme sensör geliştirilmiştir. Hava radar sistemlerinde kullanılan C bandı esas alınarak 7 GHz frekansında tepki veren bir metamalzeme sensör tasarlanmıştır. Ortamın bağıl nem miktarının artmasıyla rezonans frekans doğrusal biçimde değişmektedir. Rezonatörde elektrik alanın yoğun biçimde depo edildiği bölgenin genişliğinin bağıl nem sensörünün duyarlılığına etkisi incelenmiştir. Geliştirilen ve optimize edilen sensör her %1 kadarlık bağıl nem değişimine karşı 4,07 MHz kadar frekansta kayma göstermektedir. Önerilen sensör iklim ve çevre koşullarının takibinde kullanılabilir.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Thanks
Bu çalışma TÜBİTAK tarafından 117E5074 no’lu proje desteği ile desteklenmiştir.
References
- L. N. Gunawardhana, G. A. Al-Rawas, S. Kazama, "An alternative method for predicting relative humidity for climate change studies", Meteorological Applications, 24(4), 551–559, 2017. Doi: 10.1002/met.1641
- R. Dales, L. Liu, A. J. Wheeler, N. L. Gilbert, "Public health: Quality of indoor residential air and health". Canadian Medical Association Journal, 179(2), 147–152, 2008. Doi: 10.1503/cmaj.070359
- J. Shaman, M. Kohn, "Absolute humidity modulates influenza survival, transmission, and seasonality", Proceedings of the National Academy of Sciences, 106(9), 3243–3248, 2009. Doi: 10.1073/pnas.0806852106
- E. M. Amin, N. C. Karmakar, B. Winther-Jensen, "Polyvinyl-alcohol (PVA)-based RF humidity Sensor in microwave frequency". Progress in Electromagnetics Research B, 54, 149–166, 2014. Doi:10.2528/PIERB13061716
- E. Ekmekçi, G. Turhan-Sayan, "Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using simulated S-parameters", in Proceedings of the 5th International Conference on Electrical and Electronics Engineering, 251–254, 2007.
- R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, H. V. Demir, "Flexible metamaterials for wireless strain sensing", Applied Physics Letters, 95(18), 181105, 2009. Doi: 10.1063/1.3250175
- I. Y. Abdulkarim, L. Denga, O. Altıntaş, E. Ünal, M. Karaaslan, "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics", Physica E: Low-dimensional Systems and Nanostructures, 114, 113593, 2019. Doi: 10.1016/j.physe.2019.113593
- W. Zhang, J. Y. Li, J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber". Progress in Electromagnetics Research M, 71, 107–115, 2018. Doi: 10.2528/PIERM18042903
- R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, H. V. Demir, "Flexible metamaterials for wireless strain sensing", Applied Physics Letters, 95(18), 3–5, 2009. Doi: 10.1063/1.3250175
- R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, H. V. Demir, Nested metamaterials for wireless strain sensing, IEEE Journal of Selected Topics in Quantum Electronics, 16(2), 450, 2010. Doi: 10.1109/JSTQE.2009.2033391
- X. Yang, D. Zhang, S. Wu, Y. Yin, L. Li, K. Cao, K. Huang, "Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution", Scientific Reports, 7, 3190, 2017. Doi: 10.1038/s41598-017-03439-9
- Z. Chen, M-C. Jin, C. Zhen, "Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics", Sensors and Actuators B: Chemical, 2(3), 161–171, 1990. Doi: 10.1016/0925-4005(90)85001-F
- G. Garcia-Belmonte, V. Kytin, T. Dittrich, J. Bisquert, "Effect of humidity on the AC conductivity of nanoporous TiO2", Journal of Applied Physics, 94, 5261-5264, 2003. Doi: 10.1063/1.1610805
- Kapton Polyimide Film, [Online]. Mevcut: https://en.wikipedia.org/wiki/Kapton [Erişim: 10 Mart 2020].
- J. Virtanen, L. Ukkonen, T. Björninen, A. Z. Elsherbeni, L. Sydänheimo, "Inkjet-printed humidity sensor for passive UHF RFID systems", IEEE Transactions on Instrumentation and Measurement, 60(8), 2768, 2011. Doi: 10.1109/TIM.2011.2130070
- N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber", Physical Review Letters, 100, 207402, 2008. Doi: 10.1103/PhysRevLett.100.207402
- D. Schurig, J. J. Mock, D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials", Applied Physics Letters, 88, 041109, 2006. Doi: 10.1063/1.2166681
- W. Withayachumnankul, C. Fumeaux, D. Abbott, "Compact electric-LC resonators for metamaterials", 18, 25912 – 25921, 2010. Doi: 10.1364/OE.18.025912
- M. W. Zayed, M. Shafuzzaman, M. O. Goni, "ELC resonator based narrow band metamaterial absorber", Proceedings of the 8th International Conference on Electrical and Computer Engineering, 564–567, 2014, Doi: 10.1109/ICECE.2014.7026986
- S. Fallahzadeh, K. Forooraghi, Z. Atlasbaf, "A polarization-insensitive metamaterial absorber with a broad angular band", Proceedings of the 20th Iranian Conference on Electrical Engineering, 1540–1543, 2012. Doi: 10.1109/IranianCEE.2012.6292603
- D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, V. D. Lam, "Switchable and tunable metamaterial absorber in THz frequencies", Journal of Science: Advanced Materials and Devices, 1, 65–68, 2016. Doi: 10.1016/j.jsamd.2016.04.002
- J. Zhou, E. N. Economon, T. Koschny, C.M. Soukoulis, "Unifying approach to left-handed material design". Optics Letters, 31(24), 3620–3622, 2006. Doi: 10.1364/OL.31.003620
- A. Dhouibi, S. N. Burokur, A. Lustrac, A. Priou, "Study and analysis of an electric Z-shaped meta-atom", AEM Journal, 1, 64–70, 2012, Doi: 10.7716/aem.v1i2.82
- A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, D. Abbott, "Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications", Journal of Applied Physics, 116(8), 1–7, 2014, Doi: 10.1063/1.4893751
- H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers", Journal of Applied Physics, 110(1), 014909, 2011. Doi: 10.1063/1.3608246
- H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization", Physical Review B, 78, 241103, 2008. Doi: 10.1103/PhysRevB.78.241103
- M. Aktaş, T. Menlik, K. Boran, B. Aktekeli, Z. Aktekeli, "Isı pompalı bir kurutucuda portakal kabuğu kurutulması", Gazi Üniversitesi Fen Bilimleri Dergisi Part: C, Tasarım ve Teknoloji, 2(2), 229–238, 2014.
An Absorber-Based Metamaterial Sensor For Sensing Relative Humidity
Year 2020,
, 561 - 571, 27.09.2020
Mustafa Suphi Gülsu
,
Fulya Bağcı
,
Barış Akaoğlu
Abstract
An absorber-based metamaterial sensor is developed for detecting the relative humidity of the environment by monitoring the reflection spectrum. By taking C band used in air radar systems as a basis, a metamaterial sensor that responds at a frequency of 7 GHz is designed. As the relative humidity of the environment increases, the resonance frequency changes linearly. The impact of the width of the region, where the electric field is intensively concentrated, on the sensitivity of the sensor is investigated. The developed and optimized sensor shows a frequency shift of 4.07 MHz against every 1% change in the relative humidity. The proposed sensor can be used for tracking climate and environmental conditions.
References
- L. N. Gunawardhana, G. A. Al-Rawas, S. Kazama, "An alternative method for predicting relative humidity for climate change studies", Meteorological Applications, 24(4), 551–559, 2017. Doi: 10.1002/met.1641
- R. Dales, L. Liu, A. J. Wheeler, N. L. Gilbert, "Public health: Quality of indoor residential air and health". Canadian Medical Association Journal, 179(2), 147–152, 2008. Doi: 10.1503/cmaj.070359
- J. Shaman, M. Kohn, "Absolute humidity modulates influenza survival, transmission, and seasonality", Proceedings of the National Academy of Sciences, 106(9), 3243–3248, 2009. Doi: 10.1073/pnas.0806852106
- E. M. Amin, N. C. Karmakar, B. Winther-Jensen, "Polyvinyl-alcohol (PVA)-based RF humidity Sensor in microwave frequency". Progress in Electromagnetics Research B, 54, 149–166, 2014. Doi:10.2528/PIERB13061716
- E. Ekmekçi, G. Turhan-Sayan, "Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using simulated S-parameters", in Proceedings of the 5th International Conference on Electrical and Electronics Engineering, 251–254, 2007.
- R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, H. V. Demir, "Flexible metamaterials for wireless strain sensing", Applied Physics Letters, 95(18), 181105, 2009. Doi: 10.1063/1.3250175
- I. Y. Abdulkarim, L. Denga, O. Altıntaş, E. Ünal, M. Karaaslan, "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics", Physica E: Low-dimensional Systems and Nanostructures, 114, 113593, 2019. Doi: 10.1016/j.physe.2019.113593
- W. Zhang, J. Y. Li, J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber". Progress in Electromagnetics Research M, 71, 107–115, 2018. Doi: 10.2528/PIERM18042903
- R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, H. V. Demir, "Flexible metamaterials for wireless strain sensing", Applied Physics Letters, 95(18), 3–5, 2009. Doi: 10.1063/1.3250175
- R. Melik, E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, H. V. Demir, Nested metamaterials for wireless strain sensing, IEEE Journal of Selected Topics in Quantum Electronics, 16(2), 450, 2010. Doi: 10.1109/JSTQE.2009.2033391
- X. Yang, D. Zhang, S. Wu, Y. Yin, L. Li, K. Cao, K. Huang, "Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution", Scientific Reports, 7, 3190, 2017. Doi: 10.1038/s41598-017-03439-9
- Z. Chen, M-C. Jin, C. Zhen, "Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics", Sensors and Actuators B: Chemical, 2(3), 161–171, 1990. Doi: 10.1016/0925-4005(90)85001-F
- G. Garcia-Belmonte, V. Kytin, T. Dittrich, J. Bisquert, "Effect of humidity on the AC conductivity of nanoporous TiO2", Journal of Applied Physics, 94, 5261-5264, 2003. Doi: 10.1063/1.1610805
- Kapton Polyimide Film, [Online]. Mevcut: https://en.wikipedia.org/wiki/Kapton [Erişim: 10 Mart 2020].
- J. Virtanen, L. Ukkonen, T. Björninen, A. Z. Elsherbeni, L. Sydänheimo, "Inkjet-printed humidity sensor for passive UHF RFID systems", IEEE Transactions on Instrumentation and Measurement, 60(8), 2768, 2011. Doi: 10.1109/TIM.2011.2130070
- N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber", Physical Review Letters, 100, 207402, 2008. Doi: 10.1103/PhysRevLett.100.207402
- D. Schurig, J. J. Mock, D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials", Applied Physics Letters, 88, 041109, 2006. Doi: 10.1063/1.2166681
- W. Withayachumnankul, C. Fumeaux, D. Abbott, "Compact electric-LC resonators for metamaterials", 18, 25912 – 25921, 2010. Doi: 10.1364/OE.18.025912
- M. W. Zayed, M. Shafuzzaman, M. O. Goni, "ELC resonator based narrow band metamaterial absorber", Proceedings of the 8th International Conference on Electrical and Computer Engineering, 564–567, 2014, Doi: 10.1109/ICECE.2014.7026986
- S. Fallahzadeh, K. Forooraghi, Z. Atlasbaf, "A polarization-insensitive metamaterial absorber with a broad angular band", Proceedings of the 20th Iranian Conference on Electrical Engineering, 1540–1543, 2012. Doi: 10.1109/IranianCEE.2012.6292603
- D. H. Luu, N. V. Dung, P. Hai, T. T. Giang, V. D. Lam, "Switchable and tunable metamaterial absorber in THz frequencies", Journal of Science: Advanced Materials and Devices, 1, 65–68, 2016. Doi: 10.1016/j.jsamd.2016.04.002
- J. Zhou, E. N. Economon, T. Koschny, C.M. Soukoulis, "Unifying approach to left-handed material design". Optics Letters, 31(24), 3620–3622, 2006. Doi: 10.1364/OL.31.003620
- A. Dhouibi, S. N. Burokur, A. Lustrac, A. Priou, "Study and analysis of an electric Z-shaped meta-atom", AEM Journal, 1, 64–70, 2012, Doi: 10.7716/aem.v1i2.82
- A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, D. Abbott, "Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications", Journal of Applied Physics, 116(8), 1–7, 2014, Doi: 10.1063/1.4893751
- H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers", Journal of Applied Physics, 110(1), 014909, 2011. Doi: 10.1063/1.3608246
- H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization", Physical Review B, 78, 241103, 2008. Doi: 10.1103/PhysRevB.78.241103
- M. Aktaş, T. Menlik, K. Boran, B. Aktekeli, Z. Aktekeli, "Isı pompalı bir kurutucuda portakal kabuğu kurutulması", Gazi Üniversitesi Fen Bilimleri Dergisi Part: C, Tasarım ve Teknoloji, 2(2), 229–238, 2014.