Research Article
BibTex RIS Cite

EGZOZ ATIK ISI GERİ KAZANIMININ GERÇEKLEŞTİRİLDİĞİ TERMOELEKTRİK JENERATÖRDE FARKLI YARI İLETKEN MALZEME PERFORMANSININ TEORİK ANALİZİ

Year 2020, , 588 - 600, 27.09.2020
https://doi.org/10.29109/gujsc.725751

Abstract

Bu çalışmada, içten yanmalı motorların (İYM) egzoz atık ısı enerjisinin elektrik enerjisine dönüştürüldüğü termoelektrik jeneratörde (TEJ) farklı yarı iletken malzeme kullanımının TEJ’ün çıkış parametreleri (yük akımı, yük altındaki çıkış gerilim ve gücü) üzerine etkisi teorik olarak araştırılmıştır. Çalışmada, termoelektrik modülleri (TEM) oluşturan p-n çiftleri için Bi2Te3, Bi0,3Sb1,7Te3, PbSe0,5Te0,5 ve Zn4Sb3 tipi 4 farklı yarı iletken malzemenin kombinasyonundan oluşan 5 farklı p-n çifti oluşturulmuştur. Belirlenen p-n çiftlerinden oluşturulan TEM modüllerinin kullanıldığı TEJ, daha önceki çalışmada (Topalcı, 2017) Matlab/Simulink programında geliştirilen teorik TEJ modeli kullanılarak analiz edilmiştir. Teorik TEJ modelinde belirlenen 5 farklı p-n çiftinden oluşturulan TEM’lerin çıkış parametrelerinin analiz edilebilmesi için, iki silindirli buji ateşlemeli bir motorunun 1500-4000 rpm aralığında gerçekleştirilen deneysel çalışmalardan (Gürbüz ve Akçay, 2015) elde edilen egzoz gazının sıcaklık ve debisinin yanında motor soğutma suyu sıcaklık ve debi değerleri kullanılmıştır. Elde edilen bulgular, p-n çiftlerinde sırasıyla Bi0,3Sb1,7Te3 ve Bi2Te3 tipi yarı iletkenler kullanılarak oluşturulan TEM modüller ile TEJ’ün yük altındaki çıkış gücünün en yüksek seviyede olduğu, bu TEM’lerden 20 tanesi seri bağlanarak oluşturulan TEJ ile 4000 d/d motor devri ve ΔT = 162,4 K sıcaklık farkı altında 86,53 W (çıkış akımı = 1,073 A ve çıkış voltajı = 80,64 V) DC elektrik gücü elde edilebileceğini göstermiştir.

References

  • Mruk, A., Jordan, W., Taler, J., Lopata, S. and Weglowski, B. (1994). Heat Transfer Through Ceramic Barrier Coatings Used in Internal Combustion Engines. SAE Technical Paper, No: 941779, USA.
  • Taymaz, İ., Çakır, K., Gür, M. and Mimaroğlu A. (2003). Experimental Investigation of Heat Losses in a Ceramic Coated Diesel Engine. Surface and Coatings Technology, 168-170.
  • Gökçek, M. (2017). Waste to Energy: Exploitation of Landfill Gas in Micro-Turbines. Omer Halisdemir University Journal of Engineering Sciences, 6(2), 710-716.
  • Rowshanzadeh, R. (2008). Performance and Cost Evaluation of Organic Rankine Cycle at Different Technologies. KTH Vetenskapp Och Konst., Department of Energy Technology, M.Sc. Thesis, 101pages, Sweden.
  • Yıldıran, İ., Öner, D. and Çetin, B. (2015). GPU-Computation of 2-Dimensional Laplace Equation Using Boundary Element Method. 20th National Conference on Thermal Sciences, 2-5 September, Balıkesir, Turkey.
  • Okada, Y., Koseki, T. and Sone, S. (2003). Energy Management for Regenerative Brakes on a DC Feeding system. International Symposium on Speed-up and Service Technology for Railway and Maglev Systems, 19-22 August, Tokyo, Japan, 84-88.
  • Yang, Z., Stobart, R., Lan, S., Mason, B. and Winward E. (2018). Towards optimal performance of a thermoelectric generator for exhaust waste heat recovery from an automotive engine. SAE Technical Paper, No. 2018-01-0050.
  • Fagehi, H., Attar, A. and Lee, H. (2018). Optimal design of an automotive exhaust thermoelectric generator. Journal of Electronic Materials, 47(7), 3983-3995.
  • Sifi, I., Ghellai, N., Hima, A., Menni, Y., Chamkha, A.J. and Lorenzini, G. (2019). Study of Temperature Variation Effect on the Thermoelectric Properties of a Thermoelectric Generator with BiCuSeO Molecules. Journal: http://iieta.org/journals/ijht, 37(3), 727-732.
  • Britoa, F.P., Pachecoa, N., Vieiraa, R., Martinsa, J., Martinsa, L., Teixeiraa, J., Goncalvesd, L.M., Oliveirab, J. and Hallc, M.J. (2020). Efficiency improvement of vehicles using temperature-controlled exhaust thermoelectric generators. Energy Conversion and Management, Vol. 203.
  • Pacheco, N., Brito, F.P., Vieira, R., Martins, J., Barbosa, H. and Goncalves, L.M. (2020). Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy, Vol. 197.
  • Massaguer, A., Pujol, T., Comamala, M. and Massaguer, E. (2019). Feasibility study on a vehicular thermoelectric generator coupled to an exhaust gas heater to improve aftertreatment’s efficiency in cold-starts. Applied Thermal Engineering, Vol. 167.
  • Wang, J., Song, X., Li, Y., Zhang, C., Zhao, C. and Zhu, L. (2020). Modeling and Analysis of Thermoelectric Generators for Diesel Engine Exhaust Heat Recovery System. Journal of Energy Engineering, Vol. 146 Issue 2.
  • Subramaniam, H., Duraisamy, S., Raghavan, G. and Govindan, S. (2019). Design and development of a test rig for the performance evaluation of automotive exhaust thermoelectric generator. AIP Advances, 9.
  • Kunt, M.A. and Gunes, H. (2019). Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
  • Quan, R., Liu, G., Zhou, W. and Huang, L. (2018). Energy Management of Automobile Exhaust Thermoelectric Hybrid Power Based on Maximum Power Point Tracking and Fuzzy Logic Control. 2nd International Forum on Management, Education and Information Technology Application.
  • Shiriaev, P., Shishov, K. and Osipkov, A. (2019). Electrical network of the automotive multi-sectional thermoelectric generator with MPPT based device usage. Materials Today: Proceedings, 8, 642-651.
  • Quan, R., Wang, C., Wu, F., Chang, Y. and Deng, Y. (2019). Parameter Matching and Optimization of an ISG Mild Hybrid Powertrain Based on an Automobile Exhaust Thermoelectric Generator. Journal of Electronic Materials.
  • Thacher, E.F., Helenbrook, B.T., Karri, M.A. and Richter, C.J. (2007). Testing of an automobile exhaust thermoelectric generator in a light truck. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
  • Topalcı, Ü. (2017). Taşıt Egzoz Gazı Atık Isı Enerjisinden Elektrik Enerjisinin Üretilmesi için Termoelektrik Jeneratörün Modellenmesi. SDÜ Fen Bilimleri Enstitüsü, Haberleşme Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
  • Gürbüz, H. and Akçay, H. (2015). Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine. Thermal Science, 19(6), 2049-2064.
Year 2020, , 588 - 600, 27.09.2020
https://doi.org/10.29109/gujsc.725751

Abstract

References

  • Mruk, A., Jordan, W., Taler, J., Lopata, S. and Weglowski, B. (1994). Heat Transfer Through Ceramic Barrier Coatings Used in Internal Combustion Engines. SAE Technical Paper, No: 941779, USA.
  • Taymaz, İ., Çakır, K., Gür, M. and Mimaroğlu A. (2003). Experimental Investigation of Heat Losses in a Ceramic Coated Diesel Engine. Surface and Coatings Technology, 168-170.
  • Gökçek, M. (2017). Waste to Energy: Exploitation of Landfill Gas in Micro-Turbines. Omer Halisdemir University Journal of Engineering Sciences, 6(2), 710-716.
  • Rowshanzadeh, R. (2008). Performance and Cost Evaluation of Organic Rankine Cycle at Different Technologies. KTH Vetenskapp Och Konst., Department of Energy Technology, M.Sc. Thesis, 101pages, Sweden.
  • Yıldıran, İ., Öner, D. and Çetin, B. (2015). GPU-Computation of 2-Dimensional Laplace Equation Using Boundary Element Method. 20th National Conference on Thermal Sciences, 2-5 September, Balıkesir, Turkey.
  • Okada, Y., Koseki, T. and Sone, S. (2003). Energy Management for Regenerative Brakes on a DC Feeding system. International Symposium on Speed-up and Service Technology for Railway and Maglev Systems, 19-22 August, Tokyo, Japan, 84-88.
  • Yang, Z., Stobart, R., Lan, S., Mason, B. and Winward E. (2018). Towards optimal performance of a thermoelectric generator for exhaust waste heat recovery from an automotive engine. SAE Technical Paper, No. 2018-01-0050.
  • Fagehi, H., Attar, A. and Lee, H. (2018). Optimal design of an automotive exhaust thermoelectric generator. Journal of Electronic Materials, 47(7), 3983-3995.
  • Sifi, I., Ghellai, N., Hima, A., Menni, Y., Chamkha, A.J. and Lorenzini, G. (2019). Study of Temperature Variation Effect on the Thermoelectric Properties of a Thermoelectric Generator with BiCuSeO Molecules. Journal: http://iieta.org/journals/ijht, 37(3), 727-732.
  • Britoa, F.P., Pachecoa, N., Vieiraa, R., Martinsa, J., Martinsa, L., Teixeiraa, J., Goncalvesd, L.M., Oliveirab, J. and Hallc, M.J. (2020). Efficiency improvement of vehicles using temperature-controlled exhaust thermoelectric generators. Energy Conversion and Management, Vol. 203.
  • Pacheco, N., Brito, F.P., Vieira, R., Martins, J., Barbosa, H. and Goncalves, L.M. (2020). Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy, Vol. 197.
  • Massaguer, A., Pujol, T., Comamala, M. and Massaguer, E. (2019). Feasibility study on a vehicular thermoelectric generator coupled to an exhaust gas heater to improve aftertreatment’s efficiency in cold-starts. Applied Thermal Engineering, Vol. 167.
  • Wang, J., Song, X., Li, Y., Zhang, C., Zhao, C. and Zhu, L. (2020). Modeling and Analysis of Thermoelectric Generators for Diesel Engine Exhaust Heat Recovery System. Journal of Energy Engineering, Vol. 146 Issue 2.
  • Subramaniam, H., Duraisamy, S., Raghavan, G. and Govindan, S. (2019). Design and development of a test rig for the performance evaluation of automotive exhaust thermoelectric generator. AIP Advances, 9.
  • Kunt, M.A. and Gunes, H. (2019). Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
  • Quan, R., Liu, G., Zhou, W. and Huang, L. (2018). Energy Management of Automobile Exhaust Thermoelectric Hybrid Power Based on Maximum Power Point Tracking and Fuzzy Logic Control. 2nd International Forum on Management, Education and Information Technology Application.
  • Shiriaev, P., Shishov, K. and Osipkov, A. (2019). Electrical network of the automotive multi-sectional thermoelectric generator with MPPT based device usage. Materials Today: Proceedings, 8, 642-651.
  • Quan, R., Wang, C., Wu, F., Chang, Y. and Deng, Y. (2019). Parameter Matching and Optimization of an ISG Mild Hybrid Powertrain Based on an Automobile Exhaust Thermoelectric Generator. Journal of Electronic Materials.
  • Thacher, E.F., Helenbrook, B.T., Karri, M.A. and Richter, C.J. (2007). Testing of an automobile exhaust thermoelectric generator in a light truck. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
  • Topalcı, Ü. (2017). Taşıt Egzoz Gazı Atık Isı Enerjisinden Elektrik Enerjisinin Üretilmesi için Termoelektrik Jeneratörün Modellenmesi. SDÜ Fen Bilimleri Enstitüsü, Haberleşme Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
  • Gürbüz, H. and Akçay, H. (2015). Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine. Thermal Science, 19(6), 2049-2064.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Ümit Topalcı 0000-0001-7069-8633

Habib Gürbüz 0000-0001-5157-6227

Hüsameddin Akçay 0000-0002-5704-670X

Selim Demirtürk 0000-0001-7861-2427

Publication Date September 27, 2020
Submission Date April 23, 2020
Published in Issue Year 2020

Cite

APA Topalcı, Ü., Gürbüz, H., Akçay, H., Demirtürk, S. (2020). EGZOZ ATIK ISI GERİ KAZANIMININ GERÇEKLEŞTİRİLDİĞİ TERMOELEKTRİK JENERATÖRDE FARKLI YARI İLETKEN MALZEME PERFORMANSININ TEORİK ANALİZİ. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(3), 588-600. https://doi.org/10.29109/gujsc.725751

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526