Nb İlavesi ve Sinter Şartlarının Toz Enjeksiyon Kalıplama ile Üretilmiş AISI-420 Martenzitik Paslanmaz Çelikler Üzerine Etkisi : Mikroyapısal, Mekanik ve Korozyon Özellikler
Year 2020,
, 681 - 695, 27.09.2020
Lutfü Yakut
Semih Özbey
Hamit Gülsoy
Abstract
Bu araştırma makalesinde, Toz Enjeksiyon Kalıplama metodu kullanılarak üretilmiş AISI-420 martenzitik paslanmaz çeliklerin mikroyapsal, mekanik ve korozyon özellikleri üzerine Nb ilavesinin ve sinterleme şartlarının etkisi incelenmiştir. Gaz atomizasyonu ile üretilmiş önalaşımlı AISI-420 paslanmaz çelik tozlar polimerik bağlayıcılar ile karıştırılarak besleme stoğu oluşturulmuş ve enjeksiyon kalıplama metodu kullanılarak şekillendirme işlemleri gerçekleştirilmiştir. Kalıplama işlemi sonrasında, solvent ve ısıl bağlayıcı giderme işlemleri uygulanarak kullanılan bağlayıcıların büyük bir kısmı yapıdan uzaklaştırılmıştır. Bağlayıcısı giderilmiş numuneler 1250-1350 ºC sıcaklık aralığında H2 ve Ar atmosferi altnda sinterlenmiştir. Nihayi özelliklerin eldesi için numuneler sinterleme sonrasında ısıl işlemlere tabi tutulmuştur. Isıl işlem görmüş numunelerin yoğunlukları Arşimet prensibine göre ölçülmüştür. Mikroyapısal gelişimlerin belirlenmesi için metalografik prosedürler; mekanik özelliklerin belirlenmesi için çekme testi ve sertlik ölçümleri; korozyon dirençlerinin tespiti için potansiyometrik ölçümler gerçekleştirilmiştir. Nihayi numunelerin %99 kısmi yoğunluk değerlerine ulaştığı, Nb ilavesinin tüm mekanik ve korozyon özelliklerini geliştirdiği gözlemlenmiştir. Buna ilave olarak H2 sinterleme atmosferinde sinterlenen numunelerin en iyi özellikleri sergilediği görülmştür.
Supporting Institution
Marmara Üniversitesi
Project Number
: Bapko- FEN-C-YLP-121218-0618
Thanks
Deneysel çalışmaların gerçekleştirilmesi için vermiş oldukları desteklerden dolayı Marmara Üniversitesi, Bilimsel Araştırmalar Birimi’ne teşekkür ederiz. (Proje No: Bapko- FEN-C-YLP-121218-0618)
References
- [1] German RM., Bose A., (1997). Injection molding of metals and ceramics, New Jersey, USA, MPIF, 7-25
- [2] German RM., (1990). Powder injection molding, New Jersey, USA, MPIF, 7-10
- [3] Enneti RK., Onbattuvelli VP., Gulsoy O., Kate KH., Atre SV., (2020). Handbook of metal injection molding, Powder-binder formulation and compound manufacture in metal injection molding (MIM), London, England: Woodhead Publishing Limited, 57-88
- [4] Davis JR., (1994), Stainless Steels, ASM international, Ohio, 90-125
- [5] El-Tamimi AM., El-Hossainy TM., Investigating the machinability of AISI 420 stainless steel using factorial design, Mater. Manuf. Process. 23, 419–426, (2008)
- [6] Coleman AJ., Murray K., Kearns M., Tingskog TA., Sanford B., Gonzalez E., Properties of MIM AISI 420 via pre-alloyed and master alloy routes, International Conference on Powder Metallurgy and Particulate Materials, 412–419, (2013)
- [7] https://www.materials.sandvik/en/products/metal-powder/metal-injectionmoulding, mim/technical-papers.
- [8] Nath SD., Clinning E., Gupta G., Poirier VW., L’Espérance G., Gulsoy O., Kearns M., Atre SV., Effects of Nb and Mo on the microstructure and properties of 420 stainless steel processed by laser-powder bed fusion, Additive Manufacturing, 28, 682–691, (2019)
- [9] Taylor K., Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scr. Metall. Mater. 32, 7–12, (1995)
- [10] Moroishi T., Fujikawa H., Makiura H., The effect of carbon, zirconium, niobium, and titanium on the oxidation resistance of chromium stainless steel, J.Electrochem. Soc. 126, 2173–2182, (1979)
- [11] Yan H., Bi H., Li X., Xu Z., Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging, Mater. Charact. 60, 204–209, (2009)
- [12] Koseski RP., Suri P., Earhardt NB., German RM., Kwon YS., Microstructural evolution of injection molded gas- and water-atomized 316L stainless steel powder during sintering, Materials Science and Engineering A 390, 171–177, (2005)
- [13] Li D., Hou H., Liang L., Lee K., Powder injection molding 440C stainless steel, Int J Adv Manuf Technol, 49, 105–110 (2010)
- [14] Fujita N., Ohmura K., Yamamoto A., Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Materials Sci. and Eng. A, 351, 272-281, (2003)
- [15] Hua M., Garcia C., DeArdo A., Precipitation behavior in ultra-low-carbon steels containing titanium and niobium, Metall. Mater. Trans. A 28, 1769–1780, (1997)
- [16] Shan Y., Luo X., Hu X., Liu S., Mechanisms of solidification structure improvement of ultra-pure 17 wt% Cr ferritic stainless steel by Ti, Nb addition, J. Mater. Sci. Technol. 27, 352–358, (2011).
- [17] Taylor KA., Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scripta Metall. 32, 7-12, (1995)
- [18] Rodrigues C., Lorenzo P., Sokolowski A., Barbosa C, Rollo J., Titanium and molybdenum content in supermartensitic stainless steel, Mater. Sci. and Eng. A., 460, 149-152, (2007)
- [19] Jeglitsch F., Niobium in tool steels and cemented carbides, International Symposium on Niobium, 1001–1039, (2001)
- [20] DeArdo AJ., Niobium in modern steels, Int. Mater. Rev. 48, 371–402, (2003)
- [21] Brnic J., Turkalj G., Canadija M., Lanc D., Krscanski S., Martensitic stainless steel AISI 420-mechanical properties, creep and fracture toughness, Mech. Time-Depend. Mater. 15, 341–352, (2011)
- [22] Kimura M., Miyata Y., Toyooka T., Kitahaba Y., Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe, Corrosion 57, 433–439, (2001)
- [23] Bautista A., Velasco F., Abenojar J., Anton N., 178th Meeting of the Electrochemical Society, Abstracts vol. 2000-2, Ed. ElectrochemicalSociety, Phoenix, USA,387, (2000)
- [24] Hamdy AS., El-Shenawy E., El-Bitar T., Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl, Int. J. Electrochem. Sci. 1, 171–180, (2006)
- [25] Lu SY., Yao KF., Chen YB., Wang MH., Shao Y., Ge XY., Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel, J. Appl. Electrochem. 45, 375–383, (2015)
- [26] Carmezim MJ., Simoes AM., Montemor MF., Belo C., Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros. Sci. 47, 581–591, (2005)
- [27] Haupt S., Strehblow HH., A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 05 M H2SO4. Corros. Sci. 37, 43–54, (1995)
- [28] Fu J., Wang J., Li F., Cui K., Du X., Wu, Y., Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel. Applied Physics A, 126(3), 1-12, (2020)
- [29] Bautista, A., Velasco, F., Guzmán, S., Fuente, D. D. L., Cayuela, F., Morcillo, M., Corrosion behavior of powder metallurgical stainless steels in urban and marine environments, Revista De Metalurgia, 42(3), 175-184, (2006)
Year 2020,
, 681 - 695, 27.09.2020
Lutfü Yakut
Semih Özbey
Hamit Gülsoy
Project Number
: Bapko- FEN-C-YLP-121218-0618
References
- [1] German RM., Bose A., (1997). Injection molding of metals and ceramics, New Jersey, USA, MPIF, 7-25
- [2] German RM., (1990). Powder injection molding, New Jersey, USA, MPIF, 7-10
- [3] Enneti RK., Onbattuvelli VP., Gulsoy O., Kate KH., Atre SV., (2020). Handbook of metal injection molding, Powder-binder formulation and compound manufacture in metal injection molding (MIM), London, England: Woodhead Publishing Limited, 57-88
- [4] Davis JR., (1994), Stainless Steels, ASM international, Ohio, 90-125
- [5] El-Tamimi AM., El-Hossainy TM., Investigating the machinability of AISI 420 stainless steel using factorial design, Mater. Manuf. Process. 23, 419–426, (2008)
- [6] Coleman AJ., Murray K., Kearns M., Tingskog TA., Sanford B., Gonzalez E., Properties of MIM AISI 420 via pre-alloyed and master alloy routes, International Conference on Powder Metallurgy and Particulate Materials, 412–419, (2013)
- [7] https://www.materials.sandvik/en/products/metal-powder/metal-injectionmoulding, mim/technical-papers.
- [8] Nath SD., Clinning E., Gupta G., Poirier VW., L’Espérance G., Gulsoy O., Kearns M., Atre SV., Effects of Nb and Mo on the microstructure and properties of 420 stainless steel processed by laser-powder bed fusion, Additive Manufacturing, 28, 682–691, (2019)
- [9] Taylor K., Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scr. Metall. Mater. 32, 7–12, (1995)
- [10] Moroishi T., Fujikawa H., Makiura H., The effect of carbon, zirconium, niobium, and titanium on the oxidation resistance of chromium stainless steel, J.Electrochem. Soc. 126, 2173–2182, (1979)
- [11] Yan H., Bi H., Li X., Xu Z., Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging, Mater. Charact. 60, 204–209, (2009)
- [12] Koseski RP., Suri P., Earhardt NB., German RM., Kwon YS., Microstructural evolution of injection molded gas- and water-atomized 316L stainless steel powder during sintering, Materials Science and Engineering A 390, 171–177, (2005)
- [13] Li D., Hou H., Liang L., Lee K., Powder injection molding 440C stainless steel, Int J Adv Manuf Technol, 49, 105–110 (2010)
- [14] Fujita N., Ohmura K., Yamamoto A., Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels, Materials Sci. and Eng. A, 351, 272-281, (2003)
- [15] Hua M., Garcia C., DeArdo A., Precipitation behavior in ultra-low-carbon steels containing titanium and niobium, Metall. Mater. Trans. A 28, 1769–1780, (1997)
- [16] Shan Y., Luo X., Hu X., Liu S., Mechanisms of solidification structure improvement of ultra-pure 17 wt% Cr ferritic stainless steel by Ti, Nb addition, J. Mater. Sci. Technol. 27, 352–358, (2011).
- [17] Taylor KA., Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scripta Metall. 32, 7-12, (1995)
- [18] Rodrigues C., Lorenzo P., Sokolowski A., Barbosa C, Rollo J., Titanium and molybdenum content in supermartensitic stainless steel, Mater. Sci. and Eng. A., 460, 149-152, (2007)
- [19] Jeglitsch F., Niobium in tool steels and cemented carbides, International Symposium on Niobium, 1001–1039, (2001)
- [20] DeArdo AJ., Niobium in modern steels, Int. Mater. Rev. 48, 371–402, (2003)
- [21] Brnic J., Turkalj G., Canadija M., Lanc D., Krscanski S., Martensitic stainless steel AISI 420-mechanical properties, creep and fracture toughness, Mech. Time-Depend. Mater. 15, 341–352, (2011)
- [22] Kimura M., Miyata Y., Toyooka T., Kitahaba Y., Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe, Corrosion 57, 433–439, (2001)
- [23] Bautista A., Velasco F., Abenojar J., Anton N., 178th Meeting of the Electrochemical Society, Abstracts vol. 2000-2, Ed. ElectrochemicalSociety, Phoenix, USA,387, (2000)
- [24] Hamdy AS., El-Shenawy E., El-Bitar T., Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl, Int. J. Electrochem. Sci. 1, 171–180, (2006)
- [25] Lu SY., Yao KF., Chen YB., Wang MH., Shao Y., Ge XY., Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel, J. Appl. Electrochem. 45, 375–383, (2015)
- [26] Carmezim MJ., Simoes AM., Montemor MF., Belo C., Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros. Sci. 47, 581–591, (2005)
- [27] Haupt S., Strehblow HH., A combined surface analytical and electrochemical study of the formation of passive layers on Fe/Cr alloys in 05 M H2SO4. Corros. Sci. 37, 43–54, (1995)
- [28] Fu J., Wang J., Li F., Cui K., Du X., Wu, Y., Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel. Applied Physics A, 126(3), 1-12, (2020)
- [29] Bautista, A., Velasco, F., Guzmán, S., Fuente, D. D. L., Cayuela, F., Morcillo, M., Corrosion behavior of powder metallurgical stainless steels in urban and marine environments, Revista De Metalurgia, 42(3), 175-184, (2006)