API 5L X70M Çeliklerinin Özlü Telle Ark Kaynak Yöntemiyle Orbital Birleştirilmesinde Metalurjik ve Mekanik Özelliklerinin İncelenmesi
Year 2020,
, 981 - 995, 29.12.2020
Cemil Çetinkaya
,
Hakan Ada
,
Murat Sezgin
Abstract
Bu çalışmada; yeni bir yöntem olan orbital özlü telle ark kaynak yönteminin performansının incelenmesine yönelik bir çalışma yapılmıştır. Deneylerde petrol ve doğalgaz boru hatları için üretilen API 5L X70M kalitesindeki çelik borular kullanılmıştır. Gerçekçi sonuçlara ulaşabilmek için deneyler saha şartlarında gerçekleştirilmiştir. Deney numuneleri orbital MAG kaynak yöntemiyle özlü tel kullanılarak birleştirilmiş ve birleştirme numuneleri ayrıntılı incelenerek kaynak bölgesinin metalurjik ve mekanik özellikleri analiz edilmiştir. Yapılan incelemeler neticesinde; API 5L X70M borularının özlü tel ile ark kaynağının orbital yöntemle istenilen şekilde birleştirilebildiği, kaynak işleminin kendinden beklenen lokal özellikleri iyi bir şekilde sergilediği görülmüştür. Yapılan makro ve mikro incelemelerde çatlak, yırtılma, gözenek, cüruf kalıntısı gibi kaynak hatalarıyla karşılaşılmamıştır. Bu da kaynaklı birleştirme işlemlerinin emniyetli ve yeterli olduğunu göstermiştir.
References
- [1] Buzatti, D.T., Buzatti, J. T., Lemos, G. V. B., Amavisca, C. V., Oliveira, D. L.. P., Mattei, F., Dalpiaz, G., Reguly, A., 2020. Towards friction welding to API grade B steel pipes, Journal of Advanced Joining Processes, Volume 2.
- [2] Arora, K.S., Pandu, S.R., Shajan, N., Pathak, P., Shome, M., (2018). Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels. Int J Press Vessels Pip 163, 36–44. https://doi.org/10.1016/j.ijpvp.2018.04.004
- [3] Yeom, K.J., Kim, W. S., Oh, K. H., (2016). Integrity assessment of API X70 pipe with corroded girth and seam welds via numerical simulation and burst test experiments, Engineering Failure Analysis, 70, 375–386.
- [4] Hashemi, S.H., Sedghi, S., Soleymani, V., Mohammedyani, D., (2012). CTOA levels of welded joint in API X70 pipe steel , Engineering Fracture Mechanics 82, 46–59.
- [5] Arista, B. V., Hallen, J. M., Albiter, A., (2007). Effect of artificial aging on the microstructure of weldment on API 5L X-52 steel pipe, Materials Characterization, 58, 721–729.
- [6] Ada, H., Çetinkaya, C., (2019). Optimization of maximum tensile strength of welded joints of API 5L X65 pipes by Taguchi method, MaterialsResearch Express, 6, 036526.
- [7] Ada, H., Çetinkaya, C., and Durgutlu, A., (2019). Radiographic and macrographic investigations of welding parameters determined by Taguchi method in API 5L X65 pipe joints, Journal of Polytechnic, 22(2): 375-384.
- [8] Sung, H. K., Shina, S. Y., Cha, W., Oh, K., Lee, S., Kim, N. J., (2011). Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels, Materials Science and Engineering A, 528, 3350–3357.
- [9] Stewart, M., (2016). Material requirements. Surface Production Operations, Vol III: Facility Piping and Pipeline Systems. Gulf Professional Publishing.
- [10] Specification API 5L, (2018). Specification for line pipe, 46th Edition ed., American Petroleum Institute.
- [11] Saoudi, A., Fellah, M., Sedik, A. et al., (2019). Assessment and statistical correlation of mechanical properties of double sided single pass submerged arc welded line pipe steel, Engineering Science and Technology an International Journal, 23(2), 452-461.
- [12] Torbati, A.M., Miranda, R.M., Quintinoc, L., Williams, S., Yappa, D.,(2011). Optimization procedures for GMAW of bimetal pipes, Journal of Materials Processing Technology 211, 1112–1116.
- [13] Karakaş E., (1998). Quality and Automation in welding of Tubes, Orbital-MAG Welding Systems, Proceedings of Pipeline Welding, 99, 222-229.
- [14] Dilibal, S., Tansuğ, D., Koçak, M. (2015). Robotlu, Mekanize ve Orbital-MAG Kaynak Uygulamalarında Operatör Eğitimi, Kaykon 9. Ulusal Kongre ve Sergisi, 211-217.
- [15] Gençkan, D. H., Bal, E., Şahin, F. Ç., Taptık, İ. Y., Koçak, M., (2013), Characterization of Microstructure and Mechanical Properties of X65 and X70 Grade Pipes Welded with Orbital Welding Technology, Electronic Journal of Machine Technologies, 10(4), 45-56.
- [16] Sabapathy, P.N., Wahab, M.A., Painter, M.J., (2001). Numerical models of in-service welding of gas pipelines. Journal of Materials Processing Technology 118, 14-21.
- [17] Wahab, M.A., Sabathy, P.N., Painter, M.Y., (2005). The on set of pipewall failure during in service” welding of gas pipelines. Journal of Materials Processing Technology 108, 422–441.
- [18] Costin, W. L., Lavigne, O., Kotousov A., (2016). A study on the relationship between microstructure and mechanical properties of acicular ferrite and upper bainite, Materials Science & Engineering A, 663, 193-203.
- [19] Yang, J. H. , Liu, Q. Y., Sun, D. B., Li, X. Y., (2010), Microstructure and transformation characteristics of acicular ferrite in high niobium-bearing microalloyed steel, Journal of Iron and Steel Research, 17(6): 53-59.
- [20] Tang, Z. H., Stumpf, W., (2008). The Role of molybdenum additions and prior deformation on acicular ferrite formation in microallyed Nb-Ti low-carbon line-pipe steels. Materials Characterization, 59(6): 717.
- [21] Beidokthi, B., Koukabi, A.H., and Dolati, A., (2009). Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel. Journal of Materials Processing Technology, 209, 1-9.
- [22] Spanos, G., Fonda, R.W., Vandermeer, R.A., Matuszeski, A., (1995), Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding, Metallurgical and Materials Transactions A, 26, 3277-3293.
- [23] Zhu, M.L., Xuan, F.Z., (2010). Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels, Materials Science and Engineering A, 527, 4035–4042.
- [24] Kahraman, N., Gülenç, B., Durgutlu, A. (2005). Investigation of the effect of electrode extension distance on microstructural and mechanical properties of low carbon steel welded with submerged arc welding, Gazi University Journal of Science. 473–480
- [25] Aksöz, S., Ada, H. Özer, A., (2017). Microstructure and mechanic properties of API 5L X70 grade steel pipes produced by submerged arc welding method, Gazi University Journal of Science Part C, 5, 55–64.
- [26] Lehto, P., Remes, H., Saukkonen, T., Hänninen, H., Romanoff, J. (2014). Influence of grain size distribution on the hall–petch relationship of welded structural steel. Materials Science and Engineering, 592, 28–39.
- [27] Sandnes L., Romere L., Berto F., Welo T., Grong Q, (2019), Assessment of the mechanical integrity of a 2 mm AA6060-T6 butt weld produced using the hybrid metal extrusion & bonding (HYB) process – Part I: Bend test results, Procedia Manufacturing, 34, 147-153.
Year 2020,
, 981 - 995, 29.12.2020
Cemil Çetinkaya
,
Hakan Ada
,
Murat Sezgin
References
- [1] Buzatti, D.T., Buzatti, J. T., Lemos, G. V. B., Amavisca, C. V., Oliveira, D. L.. P., Mattei, F., Dalpiaz, G., Reguly, A., 2020. Towards friction welding to API grade B steel pipes, Journal of Advanced Joining Processes, Volume 2.
- [2] Arora, K.S., Pandu, S.R., Shajan, N., Pathak, P., Shome, M., (2018). Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels. Int J Press Vessels Pip 163, 36–44. https://doi.org/10.1016/j.ijpvp.2018.04.004
- [3] Yeom, K.J., Kim, W. S., Oh, K. H., (2016). Integrity assessment of API X70 pipe with corroded girth and seam welds via numerical simulation and burst test experiments, Engineering Failure Analysis, 70, 375–386.
- [4] Hashemi, S.H., Sedghi, S., Soleymani, V., Mohammedyani, D., (2012). CTOA levels of welded joint in API X70 pipe steel , Engineering Fracture Mechanics 82, 46–59.
- [5] Arista, B. V., Hallen, J. M., Albiter, A., (2007). Effect of artificial aging on the microstructure of weldment on API 5L X-52 steel pipe, Materials Characterization, 58, 721–729.
- [6] Ada, H., Çetinkaya, C., (2019). Optimization of maximum tensile strength of welded joints of API 5L X65 pipes by Taguchi method, MaterialsResearch Express, 6, 036526.
- [7] Ada, H., Çetinkaya, C., and Durgutlu, A., (2019). Radiographic and macrographic investigations of welding parameters determined by Taguchi method in API 5L X65 pipe joints, Journal of Polytechnic, 22(2): 375-384.
- [8] Sung, H. K., Shina, S. Y., Cha, W., Oh, K., Lee, S., Kim, N. J., (2011). Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels, Materials Science and Engineering A, 528, 3350–3357.
- [9] Stewart, M., (2016). Material requirements. Surface Production Operations, Vol III: Facility Piping and Pipeline Systems. Gulf Professional Publishing.
- [10] Specification API 5L, (2018). Specification for line pipe, 46th Edition ed., American Petroleum Institute.
- [11] Saoudi, A., Fellah, M., Sedik, A. et al., (2019). Assessment and statistical correlation of mechanical properties of double sided single pass submerged arc welded line pipe steel, Engineering Science and Technology an International Journal, 23(2), 452-461.
- [12] Torbati, A.M., Miranda, R.M., Quintinoc, L., Williams, S., Yappa, D.,(2011). Optimization procedures for GMAW of bimetal pipes, Journal of Materials Processing Technology 211, 1112–1116.
- [13] Karakaş E., (1998). Quality and Automation in welding of Tubes, Orbital-MAG Welding Systems, Proceedings of Pipeline Welding, 99, 222-229.
- [14] Dilibal, S., Tansuğ, D., Koçak, M. (2015). Robotlu, Mekanize ve Orbital-MAG Kaynak Uygulamalarında Operatör Eğitimi, Kaykon 9. Ulusal Kongre ve Sergisi, 211-217.
- [15] Gençkan, D. H., Bal, E., Şahin, F. Ç., Taptık, İ. Y., Koçak, M., (2013), Characterization of Microstructure and Mechanical Properties of X65 and X70 Grade Pipes Welded with Orbital Welding Technology, Electronic Journal of Machine Technologies, 10(4), 45-56.
- [16] Sabapathy, P.N., Wahab, M.A., Painter, M.J., (2001). Numerical models of in-service welding of gas pipelines. Journal of Materials Processing Technology 118, 14-21.
- [17] Wahab, M.A., Sabathy, P.N., Painter, M.Y., (2005). The on set of pipewall failure during in service” welding of gas pipelines. Journal of Materials Processing Technology 108, 422–441.
- [18] Costin, W. L., Lavigne, O., Kotousov A., (2016). A study on the relationship between microstructure and mechanical properties of acicular ferrite and upper bainite, Materials Science & Engineering A, 663, 193-203.
- [19] Yang, J. H. , Liu, Q. Y., Sun, D. B., Li, X. Y., (2010), Microstructure and transformation characteristics of acicular ferrite in high niobium-bearing microalloyed steel, Journal of Iron and Steel Research, 17(6): 53-59.
- [20] Tang, Z. H., Stumpf, W., (2008). The Role of molybdenum additions and prior deformation on acicular ferrite formation in microallyed Nb-Ti low-carbon line-pipe steels. Materials Characterization, 59(6): 717.
- [21] Beidokthi, B., Koukabi, A.H., and Dolati, A., (2009). Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel. Journal of Materials Processing Technology, 209, 1-9.
- [22] Spanos, G., Fonda, R.W., Vandermeer, R.A., Matuszeski, A., (1995), Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding, Metallurgical and Materials Transactions A, 26, 3277-3293.
- [23] Zhu, M.L., Xuan, F.Z., (2010). Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels, Materials Science and Engineering A, 527, 4035–4042.
- [24] Kahraman, N., Gülenç, B., Durgutlu, A. (2005). Investigation of the effect of electrode extension distance on microstructural and mechanical properties of low carbon steel welded with submerged arc welding, Gazi University Journal of Science. 473–480
- [25] Aksöz, S., Ada, H. Özer, A., (2017). Microstructure and mechanic properties of API 5L X70 grade steel pipes produced by submerged arc welding method, Gazi University Journal of Science Part C, 5, 55–64.
- [26] Lehto, P., Remes, H., Saukkonen, T., Hänninen, H., Romanoff, J. (2014). Influence of grain size distribution on the hall–petch relationship of welded structural steel. Materials Science and Engineering, 592, 28–39.
- [27] Sandnes L., Romere L., Berto F., Welo T., Grong Q, (2019), Assessment of the mechanical integrity of a 2 mm AA6060-T6 butt weld produced using the hybrid metal extrusion & bonding (HYB) process – Part I: Bend test results, Procedia Manufacturing, 34, 147-153.