Research Article
BibTex RIS Cite

Developing of a Virtual MCA to Acquire a Radiation Spectrum

Year 2021, , 220 - 225, 27.06.2021
https://doi.org/10.29109/gujsc.884948

Abstract

A virtual MCA (Multichannel Analyzer) was developed via a software in the computer environment to display a spectrum for radiation detection experiments. A pulse generator that substitutes for a particle detector was used to supply the signals to be analyzed in the MCA. The pulses from the generator were analyzed by a virtual MCA and a real MCA. Channel numbers and the number of counts in these channels, and the total counts obtained from the virtual MCA and the real MCA were compared with each other. For comparing of the number of counts, data were accumulated in different acquisition times. After comparison of the results, it was observed that the virtual MCA was quite successful as well as a real MCA. It was concluded from the introduced work that the developed virtual MCA would be able to use in a radiation detection system like a real one.

References

  • Sumathi, S. and Surekha, P. (2007). LabVIEW based Advanced Instrumentation Systems. Berlin: Springer.
  • Jerome, J. (2010). Virtual Instrumentation Using LabVIEW. New Delhi: PHI Learning Private Limited.
  • https://www.ni.com/en-tr/innovations/white-papers/06/virtual-instrumentation.html, Accessed: 17/03/2021.
  • Folea, S. (2011). LabVIEW-Practical Applications and Solutions: Application of Virtual Instrumentation in Nuclear Physics Experiments (Jiri Pechousek). Croatia: InTech.
  • Tooley, M. (2005). PC Based Instrumentation and Control (Third edition). Burlington: Elsevier.
  • Ramachandiran G., Kandhasamy J., Saminathan A. Virtual Instrumentation in Electrical Engineering Applications. J. Inst. Eng. India Ser. B, 101, 193-199, (2020). https://doi.org/10.1007/s40031-020-00437-w
  • Mâțiu-Iovan L., Ordodi V., Ionel R., Bonciog D. Virtual Instrumentation based Prototype for Evaluation of the Cardiac Systolic Function. 2020 International Symposium on Electronics and Telecommunications (ISETC), (2020). DOI: 10.1109/ISETC50328.2020.9301047
  • Aswale P. S. Teaching-Learning Process in Engineering using Virtual Instrument based on LABVIEW. IJETT, 7(1), 15006-15008, (2020).
  • Leo, W. R. (1987). Techniques for Nuclear and Particle Physics Experiments. Berlin: Springer-Verlag.
  • https://www.ortec-online.com/-/media/ametekortec/research-electronics-applications/pulse-height-charge-energy-spectroscopy.pdf?dmc=1&la=en&revision=dc127fad-999f-4b76-b190-c5f37964061a&hash=E49B7ACCA956E39AC647869BC1E4C0F3, Accessed: 17/03/2021.
  • Newton F., Ghadigaonkar V., D’souza C. Multichannel Pulse Height Analyser Using FPGA for Data Acquisition. International Journal of Students Research in Technology & Management, 3(05), 363-364, (2015).
  • Ibrahim M. M., Yussup N., Lombigit L., Rahman N. A. A., Jaafar Z. Development of Multichannel Analyzer Using Sound Card ADC for Nuclear Spectroscopy System. AIP Conf. Proc., 1584, 50-53, (2014). DOI: 10.1063/1.4866103
  • Cao H. R., Wang H. X., Zheng Y. Y. et al. Development of Digital Multi-channel and Time-division Pulse Height Analyzer Based on PXIE Bus for Hard X-ray Diagnostic in East. Instrum Exp Tech, 63, 453-460, (2020). https://doi.org/10.1134/S002044122004003X
  • Liu Y., Xiong H., Dong C., Zhao C., Zhou Q., Li S. Real-time signal processing in field programmable gate array based digital gamma-ray spectrometer. Rev. Sci. Instrum., 91, 104707, (2020). https://doi.org/10.1063/5.0005694
  • Susanto A. T. et al. A systematic literature reviews of multichannel analyzer based on FPGA for gamma spectroscopy. J. Phys.: Conf. Ser., 1528, 012016, (2020). DOI:10.1088/1742-6596/1528/1/012016
  • Kim B. J. et al. Design of optimal digital filter and digital signal processing for a CdZnTe high resolution gamma-ray system. Applied Radiation and Isotopes, 162, 109171, (2020). https://doi.org/10.1016/j.apradiso.2020.109171
  • Mitra P. et al. An environmental gamma spectrometry system with CsI(Tl) scintillator and FPGA based MCA for open field deployment. Applied Radiation and Isotopes, 172, 109677, (2021). https://doi.org/10.1016/j.apradiso.2021.109677
  • Thuraka E. R., Ganesh R., Prakash D. B. et al. Digital Multi-Channel analyzer for detection and analysis of radiation in nuclear spectroscopy. Materials Today: Proceedings, 38, 3160-3167, (2021). https://doi.org/10.1016/j.matpr.2020.09.580
  • https://www.ortec-online.com/products/electronics/pulse-generator/419, Accessed: 17/03/2021.
  • http://bascom.brynmawr.edu/physics/courses/phys331/resource/manuals/ortec_485_amplifier.pdf, Accessed: 17/03/2021.
  • https://www.ni.com/getting-started/labview-basics/execution-structures, Accessed: 17/03/2021.
  • https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P9QiSAK&l=en-TR, Accessed: 17/03/2021.

Radyasyon Spektrumu Elde Etmek için Bir Sanal MCA Geliştirilmesi

Year 2021, , 220 - 225, 27.06.2021
https://doi.org/10.29109/gujsc.884948

Abstract

Radyasyon dedeksiyon deneyleri için bir spektrumu görüntülemek amacıyla bilgisayar ortamında yazılım vasıtasıyla bir sanal MCA (Çok Kanallı Analizör) geliştirilmiştir. MCA’da analiz edilecek sinyalleri sağlamak için parçacık dedektörü yerine kullanılabilen bir puls jeneratöründen yararlanılmıştır. Jeneratörden gelen pulslar sanal MCA ve gerçek MCA tarafından analiz edilmiştir. Sanal MCA’dan ve gerçek MCA’dan elde edilen kanal numaraları, bu kanal numaralarına karşılık gelen sayım sayıları ve toplam sayımlar birbirleriyle karşılaştırılmıştır. Sayım sayılarını karşılaştırmak için de veriler farklı sayım sürelerinde alınmıştır. Sonuçların karşılaştırmasından sonra sanal MCA’nın, gerçek bir MCA kadar başarılı olduğu gözlenmiştir. Bu çalışmada geliştirilen sanal MCA’nın, tıpkı gerçeği gibi radyasyon dedeksiyon sisteminde kullanılabileceği sonucuna varılmıştır.

References

  • Sumathi, S. and Surekha, P. (2007). LabVIEW based Advanced Instrumentation Systems. Berlin: Springer.
  • Jerome, J. (2010). Virtual Instrumentation Using LabVIEW. New Delhi: PHI Learning Private Limited.
  • https://www.ni.com/en-tr/innovations/white-papers/06/virtual-instrumentation.html, Accessed: 17/03/2021.
  • Folea, S. (2011). LabVIEW-Practical Applications and Solutions: Application of Virtual Instrumentation in Nuclear Physics Experiments (Jiri Pechousek). Croatia: InTech.
  • Tooley, M. (2005). PC Based Instrumentation and Control (Third edition). Burlington: Elsevier.
  • Ramachandiran G., Kandhasamy J., Saminathan A. Virtual Instrumentation in Electrical Engineering Applications. J. Inst. Eng. India Ser. B, 101, 193-199, (2020). https://doi.org/10.1007/s40031-020-00437-w
  • Mâțiu-Iovan L., Ordodi V., Ionel R., Bonciog D. Virtual Instrumentation based Prototype for Evaluation of the Cardiac Systolic Function. 2020 International Symposium on Electronics and Telecommunications (ISETC), (2020). DOI: 10.1109/ISETC50328.2020.9301047
  • Aswale P. S. Teaching-Learning Process in Engineering using Virtual Instrument based on LABVIEW. IJETT, 7(1), 15006-15008, (2020).
  • Leo, W. R. (1987). Techniques for Nuclear and Particle Physics Experiments. Berlin: Springer-Verlag.
  • https://www.ortec-online.com/-/media/ametekortec/research-electronics-applications/pulse-height-charge-energy-spectroscopy.pdf?dmc=1&la=en&revision=dc127fad-999f-4b76-b190-c5f37964061a&hash=E49B7ACCA956E39AC647869BC1E4C0F3, Accessed: 17/03/2021.
  • Newton F., Ghadigaonkar V., D’souza C. Multichannel Pulse Height Analyser Using FPGA for Data Acquisition. International Journal of Students Research in Technology & Management, 3(05), 363-364, (2015).
  • Ibrahim M. M., Yussup N., Lombigit L., Rahman N. A. A., Jaafar Z. Development of Multichannel Analyzer Using Sound Card ADC for Nuclear Spectroscopy System. AIP Conf. Proc., 1584, 50-53, (2014). DOI: 10.1063/1.4866103
  • Cao H. R., Wang H. X., Zheng Y. Y. et al. Development of Digital Multi-channel and Time-division Pulse Height Analyzer Based on PXIE Bus for Hard X-ray Diagnostic in East. Instrum Exp Tech, 63, 453-460, (2020). https://doi.org/10.1134/S002044122004003X
  • Liu Y., Xiong H., Dong C., Zhao C., Zhou Q., Li S. Real-time signal processing in field programmable gate array based digital gamma-ray spectrometer. Rev. Sci. Instrum., 91, 104707, (2020). https://doi.org/10.1063/5.0005694
  • Susanto A. T. et al. A systematic literature reviews of multichannel analyzer based on FPGA for gamma spectroscopy. J. Phys.: Conf. Ser., 1528, 012016, (2020). DOI:10.1088/1742-6596/1528/1/012016
  • Kim B. J. et al. Design of optimal digital filter and digital signal processing for a CdZnTe high resolution gamma-ray system. Applied Radiation and Isotopes, 162, 109171, (2020). https://doi.org/10.1016/j.apradiso.2020.109171
  • Mitra P. et al. An environmental gamma spectrometry system with CsI(Tl) scintillator and FPGA based MCA for open field deployment. Applied Radiation and Isotopes, 172, 109677, (2021). https://doi.org/10.1016/j.apradiso.2021.109677
  • Thuraka E. R., Ganesh R., Prakash D. B. et al. Digital Multi-Channel analyzer for detection and analysis of radiation in nuclear spectroscopy. Materials Today: Proceedings, 38, 3160-3167, (2021). https://doi.org/10.1016/j.matpr.2020.09.580
  • https://www.ortec-online.com/products/electronics/pulse-generator/419, Accessed: 17/03/2021.
  • http://bascom.brynmawr.edu/physics/courses/phys331/resource/manuals/ortec_485_amplifier.pdf, Accessed: 17/03/2021.
  • https://www.ni.com/getting-started/labview-basics/execution-structures, Accessed: 17/03/2021.
  • https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P9QiSAK&l=en-TR, Accessed: 17/03/2021.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Gözde Tektaş 0000-0003-3360-5236

Cüneyt Çeliktaş 0000-0001-8608-066X

Publication Date June 27, 2021
Submission Date February 22, 2021
Published in Issue Year 2021

Cite

APA Tektaş, G., & Çeliktaş, C. (2021). Developing of a Virtual MCA to Acquire a Radiation Spectrum. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(2), 220-225. https://doi.org/10.29109/gujsc.884948

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526