Research Article
BibTex RIS Cite
Year 2021, , 347 - 356, 27.06.2021
https://doi.org/10.29109/gujsc.929365

Abstract

Güvenilir bir öğrenci modeli elde etmek, Akıllı Öğretici Sistemlerin temel görevlerindendir. Kesin olarak tanımlanmış bir öğrenci modeli de Akıllı Öğretici Sistemlerin (AÖS) başarısı için anahtar niteliğindedir. Bu makalede, dil öğretiminde doğru bir öğrenci modelinin elde edilmesine yönelik bir çalışma sunulmaktadır. Çalışmada AÖS’lerin genel yapısına ek olarak, Bayes Ağlarını kullanan olasılıksal bir çıkarım modeli gösterilmiştir. Bayes Ağları, düğümlerin rastgele değişkenleri, arkların bu düğümler arasındaki olasılıksal bağımlılıkları gösterdiği yönlü çevrimsiz çizgelerdir. Bu çalışmada, grafik modeller ve model yapıları, Decision Sytstems Laboratory’de geliştirilen genel amaçlı bir karar modelleme sistemi olan SMILE ve onun Windows işletim sistemi tabanlı kullanıcı arayüzü GeNIe'de uygulanmıştır. Çalışmada GeNIe kullanıcı arayüzü etki diyagramlarının gerçekleştirilmesi için de kullanılmıştır. Etki diyagramları karar sorunlarını ifade ederler ve beklenen en yüksek kazanca sahip bir karar alternatifi seçmeye yardımcı olurlar. Çalışmanın sonlarına doğru, standart bir yeterlilik seviyesi ile doğrudan ilişkilendirilebilen bir AÖS öğrenci modelinin geliştirilmesi hedeflenmiştir. Bu model aynı zamanda dilbilgisi, kelime bilgisi ve farklı durumlarda dilin kullanımı gibi dil bileşenlerini içeren bir domain modeli ile de tamamlanmıştır. Çalışmanın sonunda deneysel bir çalışma ile modelin bir değerlendirmesi yapılmış ve sonuçlar, sunulan ITS modeli ile çalışan katılımcıların gerçek bir öğretmenle çalışan katılımcılardan elde edilen başarı verilerine yakın sonuçlar elde ettiklerini göstermiştir.

References

  • V. J. Shute and J. Psotka, “Intelligent Tutoring Systems: Past, Present, and Future.” US Dept of the Air Force, Tech. Rep., May 1994.
  • A. Molnar, “Computers in Education: A Historical Perspective of the Unfinished Task,” T H E Journal (Technological Horizons In Education), vol. 18, no. 4, p. 80, 1990.
  • J. Kosakowski, “The Benefits of Information Technology. ERIC Digest., 1998-Jun,” Tech. Rep., jun 1998.
  • B. P. Woolf, Building Intelligent Interactive Tutors. Elsevier, 2009, pp. 60–94.
  • R. Santhi, B. Priya, and J. M. Nandhini, “Review of Intelligent Tutoring Systems Using Bayesian Approach,” Feb 2013.
  • S. Ritter, J. Anderson, M. Cytrynowicz, and O. Medvedeva, “Authoring Content in the PAT Algebra Tutor,” Journal of Interactive Media in Education, vol. 1998, no. 2, p. 9, oct 1998.
  • A. C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, and R. Kreuz, “AutoTutor: A simulation of a human tutor,” Cognitive Systems Research, vol. 1, no. 1, pp. 35–51, dec 1999.
  • C. R. Eliot III, “An Intelligent Tutoring System Based Upon Adaptive Simulation,” Ph.D. dissertation, 1996.
  • C. J. Butz, S. Hua, and R. B. Maguire, “Web-based Bayesian intelligent tutoring systems,” pp. 221–242, 2008.
  • K. Chrysafiadi and M. Virvou, “Student Modeling Approaches: A literature review for the last decade,” pp. 4715–4729, Sep 2013.
  • M. D. Bush, “Computer-assisted language learning: From vision to reality?” CALICO Journal, vol. 25, no. 3, pp. 443–470, 2008.
  • I. Padayachee, “Intelligent tutoring systems: Architecture and characteristics,” Tech. Rep., 2002.
  • V. Slavuj, B. Kovacic, and I. Jugo, “Intelligent tutoring systems for language learning,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), no. May. IEEE, may 2015, pp. 814–819.
  • F. Goullier, “Council of Europe Tools for Language Teaching: Common European Framework and Portfolios,” p. 130, 2006. [Online]. Available:https://www.coe.int/t/dg4/linguistic/Source/Goullier Outils EN.pdf
  • J. Reye, “Student Modelling based on Belief Networks,” Tech. Rep., 2004.
  • O. H. Hamid, F. Alaiwy, and I. O. Hussien, “A Bayesian Network Model for More Natrual Intelligent Tutoring Systems,” International Journal of Enhanced Research in Science Technology & Engineering, vol. 4, no. 2, pp. 109–114, 2015.
  • J. Pearl and J. Pearl, “Chapter 1 – UNCERTAINTY IN AI SYSTEMS: AN OVERVIEW,” in Probabilistic Reasoning in Intelligent Systems, 1988, pp. 1–28.
  • M. Mayo and A. Mitrovic, “Optimising ITS behaviour with Bayesian networks and decision theory,” Tech. Rep., 2001.
  • C. Conati, A. Gertner, and K. Vanlehn, “Using Bayesian networks to manage uncertainty in student modeling,” User Modelling and User- Adapted Interaction, vol. 12, no. 4, pp. 371–417, 2002.
  • R. M. Kaplan, H. Trenholm, D. Gitomer, and L. Steinberg, “Generalizable architecture for building intelligent tutoring systems,” Proceedings of the Conference on Artificial Intelligence Applications, p. 458, 1993.
  • R. A. Howard and J. E. Matheson, “Influence Diagrams,” Decision Analysis, vol. 2, no. 3, pp. 127–143, 2005.
  • “Influence Diagrams,” in SpringerReference. Berlin/Heidelberg: Springer-Verlag, 2011. [Online]. Available:https://www.bayesfusion.com/influence-diagrams/ http://www.springerreference.com/index/doi/10.1007/ SpringerReference 62286
  • P. Karampiperis and D. G. Sampson, “Adaptive Learning Resources Sequencing in Educational Hypermedia Systems,” Educational Technology Society, 2005.

Student Modelling on Language Teaching Based on Bayesian Networks

Year 2021, , 347 - 356, 27.06.2021
https://doi.org/10.29109/gujsc.929365

Abstract

Acquiring a reliable student model is the principal task of an Intelligent Tutoring System (ITS). A precisely defined student model is also the key term for the success of ITSs. In this paper, a study on inferring the accurate student model on language learning is offered by utilizing artificial intelligence. In addition to the general structure of an ITS, a probabilistic model for inference using Bayesian Networks is stated in the paper. Bayesian Networks are acyclic directed graphs in which nodes represent random variables and arcs represent direct probabilistic dependences among them. In this study, graphical models and structures are implemented in a general-purpose decision modelling system SMILE and its Windows user interface, GeNIe, developed at the Decision Systems Laboratory. GeNIe user interface is also used in this study to perform Influence diagrams. Influence diagrams represent decision problems and help to choose a decision alternative with the highest expected gain. Toward the end of the study, an ITS student model which is directly associated with a standard proficiency level is aimed to be developed. This model is also complemented with a domain model which incorporates language components such as grammar, vocabulary, and functions of language in different cases. At the end of the study, an evaluation of the model is performed with an experimental study and the results show that the participants worked with offered ITS model gathered close results when compared to those obtained by the participants who worked with a real tutor.

References

  • V. J. Shute and J. Psotka, “Intelligent Tutoring Systems: Past, Present, and Future.” US Dept of the Air Force, Tech. Rep., May 1994.
  • A. Molnar, “Computers in Education: A Historical Perspective of the Unfinished Task,” T H E Journal (Technological Horizons In Education), vol. 18, no. 4, p. 80, 1990.
  • J. Kosakowski, “The Benefits of Information Technology. ERIC Digest., 1998-Jun,” Tech. Rep., jun 1998.
  • B. P. Woolf, Building Intelligent Interactive Tutors. Elsevier, 2009, pp. 60–94.
  • R. Santhi, B. Priya, and J. M. Nandhini, “Review of Intelligent Tutoring Systems Using Bayesian Approach,” Feb 2013.
  • S. Ritter, J. Anderson, M. Cytrynowicz, and O. Medvedeva, “Authoring Content in the PAT Algebra Tutor,” Journal of Interactive Media in Education, vol. 1998, no. 2, p. 9, oct 1998.
  • A. C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, and R. Kreuz, “AutoTutor: A simulation of a human tutor,” Cognitive Systems Research, vol. 1, no. 1, pp. 35–51, dec 1999.
  • C. R. Eliot III, “An Intelligent Tutoring System Based Upon Adaptive Simulation,” Ph.D. dissertation, 1996.
  • C. J. Butz, S. Hua, and R. B. Maguire, “Web-based Bayesian intelligent tutoring systems,” pp. 221–242, 2008.
  • K. Chrysafiadi and M. Virvou, “Student Modeling Approaches: A literature review for the last decade,” pp. 4715–4729, Sep 2013.
  • M. D. Bush, “Computer-assisted language learning: From vision to reality?” CALICO Journal, vol. 25, no. 3, pp. 443–470, 2008.
  • I. Padayachee, “Intelligent tutoring systems: Architecture and characteristics,” Tech. Rep., 2002.
  • V. Slavuj, B. Kovacic, and I. Jugo, “Intelligent tutoring systems for language learning,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), no. May. IEEE, may 2015, pp. 814–819.
  • F. Goullier, “Council of Europe Tools for Language Teaching: Common European Framework and Portfolios,” p. 130, 2006. [Online]. Available:https://www.coe.int/t/dg4/linguistic/Source/Goullier Outils EN.pdf
  • J. Reye, “Student Modelling based on Belief Networks,” Tech. Rep., 2004.
  • O. H. Hamid, F. Alaiwy, and I. O. Hussien, “A Bayesian Network Model for More Natrual Intelligent Tutoring Systems,” International Journal of Enhanced Research in Science Technology & Engineering, vol. 4, no. 2, pp. 109–114, 2015.
  • J. Pearl and J. Pearl, “Chapter 1 – UNCERTAINTY IN AI SYSTEMS: AN OVERVIEW,” in Probabilistic Reasoning in Intelligent Systems, 1988, pp. 1–28.
  • M. Mayo and A. Mitrovic, “Optimising ITS behaviour with Bayesian networks and decision theory,” Tech. Rep., 2001.
  • C. Conati, A. Gertner, and K. Vanlehn, “Using Bayesian networks to manage uncertainty in student modeling,” User Modelling and User- Adapted Interaction, vol. 12, no. 4, pp. 371–417, 2002.
  • R. M. Kaplan, H. Trenholm, D. Gitomer, and L. Steinberg, “Generalizable architecture for building intelligent tutoring systems,” Proceedings of the Conference on Artificial Intelligence Applications, p. 458, 1993.
  • R. A. Howard and J. E. Matheson, “Influence Diagrams,” Decision Analysis, vol. 2, no. 3, pp. 127–143, 2005.
  • “Influence Diagrams,” in SpringerReference. Berlin/Heidelberg: Springer-Verlag, 2011. [Online]. Available:https://www.bayesfusion.com/influence-diagrams/ http://www.springerreference.com/index/doi/10.1007/ SpringerReference 62286
  • P. Karampiperis and D. G. Sampson, “Adaptive Learning Resources Sequencing in Educational Hypermedia Systems,” Educational Technology Society, 2005.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Selçuk Şener 0000-0003-2251-5366

Ali Güneş 0000-0001-6177-3136

Publication Date June 27, 2021
Submission Date April 28, 2021
Published in Issue Year 2021

Cite

APA Şener, S., & Güneş, A. (2021). Student Modelling on Language Teaching Based on Bayesian Networks. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(2), 347-356. https://doi.org/10.29109/gujsc.929365

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526