Research Article
BibTex RIS Cite

Epileptik EEG Sinyallerinin Sınıflandırılması için Bir Boyutlu Medyan Yerel İkili Örüntü Temelli Öznitelik Çıkarımı

Year 2017, Volume: 5 Issue: 3, 97 - 107, 15.09.2017

Abstract

Elektroansefalogram (EEG),
epilepsi tespitinde yaygın olarak kullanılan önemli bir veri kaynağıdır.
Bu
çalışmada da Bonn Üniversitesi Epileptoloji bölümü veritabanından alınan
ve  A, B, C, D, E olmak üzere 5 işaret grubundan oluşan EEG
kayıtları kullanılmıştır. Bir boyutklu medyan yerel ikili örüntü (1B-MYİÖ) yöntemi uygulanarak elde edilen
özniteliklerin k-En Yakın Komşu (k-NN) sınıflandırıcısı ile sınıflandırılması
amaçlanmıştır. Çalışmada geliştirilen 1B-MYİÖ yönteminin öznitelik olarak sınıflandırma başarısı
değerlendirilmiştir. Bu sınıflandırma için karışıklık matrisi hesaplanarak
model başarım ölçümü yapılmıştır. Çalışmada A-E veri setleri için sınıflandırma
performansı %100.0, A-D veri setleri için %99.00, D-E veri setleri için %98.00,
E-CD veri setleri için %99.50 ve A-D-E veri setleri için de %96.00 olarak
bulunmuştur. Çalışmada kullanılan 1B-MYİÖ yönteminin, literatürde kullanılan
birçok yöntemden daha iyi sonuç verdiği görülmüştür.

References

  • 1. Acharya U.R. et al., “Automated EEG Analysis of Epilepsy:” a Review, Know. Based Syst. 45,147–165, 2013.
  • 2. Iasemidis L.D. ,et al. “Adaptiveepileptic seizure prediction system” , IEEE Trans. Biomed. Eng. 50 (5), 616–627, 2003.
  • 3. Kumar T. S., Kanhangad V., Pachori R. B., “Classification of seizure and seizure-free EEG signals using localbinary patterns” , Biomedical Signal Processing and Control 15,33–40, 2015.
  • 4. Kaya Y., Uyar M. , Tekin R. , Yıldırım S., “1D-local binary pattern based feature extraction for classification of epileptic EEG signals”, Applied Math.&Computation 243209–219, 2014.
  • 5. Kaya Y., Sezgin N., Tekin R., “Tıkayıcı uyku apnesi sendromunun tespiti için tek boyutlu yerel ikili örüntü tabanlı yeni bir yaklaşım”, Sinyal İşleme Uygulamaları (SİU), 2014.
  • 6. Ertuğrul Ö. F., Kaya Y. , Tekin R. , Almalı M. N., “Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from Gait”, Expert Systems With Applications 56,156–163, 2016.
  • 7. Aiswal K. J, Banka H. , “Local pattern transformation based feature extraction techniques forclassification of epileptic EEG signals”, Biomedical Signal Proc. and Control 34,81–92, 2017.
  • 8. Reza B., Foroozan K., Mohammad N., “A comparative review on sleep stage classification methods in patients and healthy individuals”, Computer Methods and Programs in Biomedicine 140, 77–91, 2017.
  • 9. http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
  • 10. Ahonen T., Hadid A., Pietikainen M., “Face description with local binarypatterns: application to face recognition”, IEEE Trans. Pattern Anal. Mach.Intell. 28 (12) ,2037–2041, 2006.
  • 11. Chatlani N., Soraghan J.J., “Local binary patterns for 1-D signal processing”, in:18th European Signal Processing Conference (EUSIPCO-2010), pp.95–99, 2010.
  • 12. Lee S., Kang P., , Cho S., “Probabilistic local reconstruction for k-NN regression and its application to virtual metrology in semi conductor manufacturing”, Neurocomputing-131,427–439, 2014.
  • 13. Eren Ö., “Alerjen proteinlerin otomatik olarak sınıflandırılması”, Başkent üniversitesi Fen Bilimleri Enstitüsü Y.Lisans Tezi, 2008.
  • 14. Kumar Y., Dewal M., Anand R., “Epileptic seizure detection using dwt basedfuzzy approximate entropy and support vector machine”, Neurocomputing133, 271–279, 2014. 15. Polat K., Günes S.¸ “Classification of epileptiform EEG using a hybrid systembased on decision tree classifier and fast fourier transform”, Appl. Math.Comput. 187 (2),1017–1026, 2007.
  • 16. Lee S.H., Lim J.S., Ki J.-K. m, Yang J., Lee Y., “Classification of normal andepileptic seizure EEG signals using wavelet transform”, phase-spacereconstruction, and Euclidean distance, Comput. Methods Programs Biomed.116 (1),10–25, 2014.
  • 17. Nigam V.P., Graupe D., “A neural-network-based detection of epilepsy”, Neurol.Res. 26 (1), 55–60,2014. 18. Ocak H., “Automatic detection of epileptic seizures in eeg using discrete wavelet transform and approximate entropy”, Expert Syst. Appl. 36 (2), 2027–2036, 2009.
  • 19. Chandaka S., Chatterjee A., Munshi S., “Cross-correlation aided support vectormachine classifier for classification of EEG signals”, Expert Syst. Appl. 36 (2),1329–1336, 2009.
  • 20. Guo L., Rivero D., Seoane J.A., Pazos A., “Classification of EEG signals usingrelative wavelet energy and artificial neural Networks”, in: Proceedings of theFirst ACM/SIGEVO Summit on Genetic and Evolutionary Computation, ACM, pp. 177–184, ,2009.
  • 21. Subasi A., “EEG signal classification using wavelet feature extraction and amixture of expert model”, Expert Syst. Appl. 32 (4) 1084–1093, 2007.
  • 22. Isık H.¸ Sezer E., “Diagnosis of epilepsy from electroencephalography signalsusing multilayer perceptron and Elman artificial neural networks and wavelet transform”, J. Med. Syst. 36 (1) , 1–13, 2012.
  • 23. Swami P., Gandhi T.K., Panigrahi B.K., Tripathi M., Anand S., “A novel robustdiagnostic model to detect seizures in electroencephalography”, Expert Syst.Appl. 56, 116–130, 2016
  • 24. Tawfik N.S., Youssef S.M., Kholief M., “A hybrid automated detection ofepileptic seizures in EEG records”, Comput. Electr. Eng., 2015.
  • 25. Subasi A., Gursoy M.I., “EEG signal classification using PCA, ICA, LDA andsupport vector machines”, Expert Syst. Appl. 37 (12), 8659–8666, 2010. 26. Nicolaou N., Georgiou J., “Detection of epileptic electroencephalogram basedon permutation entropy and support vector machines”, Expert Syst. Appl. 39(1) (2012) 202–209.
  • 27. Joshi V., Pachori R.B., Vijesh A., “Classification of ictal and seizure-free EEGsignals using fractional linear prediction”, Biomed. Signal Process. Control 9, 1–5, 2014.
  • 28. Peker M., Sen B., Delen D., “A novel method for automated diagnosis ofepilepsy using complex-valued classifiers”, IEEE J. Biomed. Health Inform. 20(1), 108–118, 2016.
  • 29. Orhan U., Hekim M., Ozer M., “EEG signals classification using the k-meansclustering and a multilayer perceptron neural network model”, Expert Syst.Appl. 38 (10), 13475–13481, 2011.
  • 30. Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E., “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state”, Phys. Rev. E 64 (6), pp. 061907 (1–8), 2001.
Year 2017, Volume: 5 Issue: 3, 97 - 107, 15.09.2017

Abstract

References

  • 1. Acharya U.R. et al., “Automated EEG Analysis of Epilepsy:” a Review, Know. Based Syst. 45,147–165, 2013.
  • 2. Iasemidis L.D. ,et al. “Adaptiveepileptic seizure prediction system” , IEEE Trans. Biomed. Eng. 50 (5), 616–627, 2003.
  • 3. Kumar T. S., Kanhangad V., Pachori R. B., “Classification of seizure and seizure-free EEG signals using localbinary patterns” , Biomedical Signal Processing and Control 15,33–40, 2015.
  • 4. Kaya Y., Uyar M. , Tekin R. , Yıldırım S., “1D-local binary pattern based feature extraction for classification of epileptic EEG signals”, Applied Math.&Computation 243209–219, 2014.
  • 5. Kaya Y., Sezgin N., Tekin R., “Tıkayıcı uyku apnesi sendromunun tespiti için tek boyutlu yerel ikili örüntü tabanlı yeni bir yaklaşım”, Sinyal İşleme Uygulamaları (SİU), 2014.
  • 6. Ertuğrul Ö. F., Kaya Y. , Tekin R. , Almalı M. N., “Detection of Parkinson’s disease by Shifted One Dimensional Local Binary Patterns from Gait”, Expert Systems With Applications 56,156–163, 2016.
  • 7. Aiswal K. J, Banka H. , “Local pattern transformation based feature extraction techniques forclassification of epileptic EEG signals”, Biomedical Signal Proc. and Control 34,81–92, 2017.
  • 8. Reza B., Foroozan K., Mohammad N., “A comparative review on sleep stage classification methods in patients and healthy individuals”, Computer Methods and Programs in Biomedicine 140, 77–91, 2017.
  • 9. http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
  • 10. Ahonen T., Hadid A., Pietikainen M., “Face description with local binarypatterns: application to face recognition”, IEEE Trans. Pattern Anal. Mach.Intell. 28 (12) ,2037–2041, 2006.
  • 11. Chatlani N., Soraghan J.J., “Local binary patterns for 1-D signal processing”, in:18th European Signal Processing Conference (EUSIPCO-2010), pp.95–99, 2010.
  • 12. Lee S., Kang P., , Cho S., “Probabilistic local reconstruction for k-NN regression and its application to virtual metrology in semi conductor manufacturing”, Neurocomputing-131,427–439, 2014.
  • 13. Eren Ö., “Alerjen proteinlerin otomatik olarak sınıflandırılması”, Başkent üniversitesi Fen Bilimleri Enstitüsü Y.Lisans Tezi, 2008.
  • 14. Kumar Y., Dewal M., Anand R., “Epileptic seizure detection using dwt basedfuzzy approximate entropy and support vector machine”, Neurocomputing133, 271–279, 2014. 15. Polat K., Günes S.¸ “Classification of epileptiform EEG using a hybrid systembased on decision tree classifier and fast fourier transform”, Appl. Math.Comput. 187 (2),1017–1026, 2007.
  • 16. Lee S.H., Lim J.S., Ki J.-K. m, Yang J., Lee Y., “Classification of normal andepileptic seizure EEG signals using wavelet transform”, phase-spacereconstruction, and Euclidean distance, Comput. Methods Programs Biomed.116 (1),10–25, 2014.
  • 17. Nigam V.P., Graupe D., “A neural-network-based detection of epilepsy”, Neurol.Res. 26 (1), 55–60,2014. 18. Ocak H., “Automatic detection of epileptic seizures in eeg using discrete wavelet transform and approximate entropy”, Expert Syst. Appl. 36 (2), 2027–2036, 2009.
  • 19. Chandaka S., Chatterjee A., Munshi S., “Cross-correlation aided support vectormachine classifier for classification of EEG signals”, Expert Syst. Appl. 36 (2),1329–1336, 2009.
  • 20. Guo L., Rivero D., Seoane J.A., Pazos A., “Classification of EEG signals usingrelative wavelet energy and artificial neural Networks”, in: Proceedings of theFirst ACM/SIGEVO Summit on Genetic and Evolutionary Computation, ACM, pp. 177–184, ,2009.
  • 21. Subasi A., “EEG signal classification using wavelet feature extraction and amixture of expert model”, Expert Syst. Appl. 32 (4) 1084–1093, 2007.
  • 22. Isık H.¸ Sezer E., “Diagnosis of epilepsy from electroencephalography signalsusing multilayer perceptron and Elman artificial neural networks and wavelet transform”, J. Med. Syst. 36 (1) , 1–13, 2012.
  • 23. Swami P., Gandhi T.K., Panigrahi B.K., Tripathi M., Anand S., “A novel robustdiagnostic model to detect seizures in electroencephalography”, Expert Syst.Appl. 56, 116–130, 2016
  • 24. Tawfik N.S., Youssef S.M., Kholief M., “A hybrid automated detection ofepileptic seizures in EEG records”, Comput. Electr. Eng., 2015.
  • 25. Subasi A., Gursoy M.I., “EEG signal classification using PCA, ICA, LDA andsupport vector machines”, Expert Syst. Appl. 37 (12), 8659–8666, 2010. 26. Nicolaou N., Georgiou J., “Detection of epileptic electroencephalogram basedon permutation entropy and support vector machines”, Expert Syst. Appl. 39(1) (2012) 202–209.
  • 27. Joshi V., Pachori R.B., Vijesh A., “Classification of ictal and seizure-free EEGsignals using fractional linear prediction”, Biomed. Signal Process. Control 9, 1–5, 2014.
  • 28. Peker M., Sen B., Delen D., “A novel method for automated diagnosis ofepilepsy using complex-valued classifiers”, IEEE J. Biomed. Health Inform. 20(1), 108–118, 2016.
  • 29. Orhan U., Hekim M., Ozer M., “EEG signals classification using the k-meansclustering and a multilayer perceptron neural network model”, Expert Syst.Appl. 38 (10), 13475–13481, 2011.
  • 30. Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E., “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state”, Phys. Rev. E 64 (6), pp. 061907 (1–8), 2001.
There are 27 citations in total.

Details

Journal Section Original Articles
Authors

Ömer Türk

Mehmet Siraç Özerdem This is me

Publication Date September 15, 2017
Submission Date May 18, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Türk, Ö., & Özerdem, M. S. (2017). Epileptik EEG Sinyallerinin Sınıflandırılması için Bir Boyutlu Medyan Yerel İkili Örüntü Temelli Öznitelik Çıkarımı. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 5(3), 97-107.

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526