Research Article
BibTex RIS Cite

Aynı Şartlarda Hazırlanmış Al/Bi3Ti4O12/n-Si (MFS) diyotların (60 Adet) Engel Yükseklikleri İle İdealite Faktörlerindeki Dağılım

Year 2017, Volume: 5 Issue: 3, 89 - 96, 15.09.2017

Abstract

Bu çalışmada, aynı şartlarda hazırlanmış 60 adet Al/Bi3Ti4O12/n-Si (MFS) diyot için engel
yükseklikleri (bo) ile idealite faktörleri (n) arasındaki bağıntı, doğru ön-gerilim akım-voltaj (IV)
karakteristikleri kullanılarak oda sıcaklığımda incelendi. Deneysel sonuçlar, aynı koşullarda
ve aynı n tipi Si wafer üzerinde hazırlanmalarına rağmen, bu diyotların bo ve n değerleri oldukça
farklılık göstermiştir. Yüksek n değerleri, BTO arayüzey tabakanın kalınlığına ve engel
homojensizliğine atfedildi. Bu istenmeyen durumun fiziksel kaynağını açıklamak, ilerde
üretilecek numunelerin kalitesi ve tekrarlanabilirliği açışından oldukça önem arz etmektedir. bo
ve n değerlerindeki değişimin oldukça Gaussyen dağılıma uyduğu görüldü ve bu değerler
arasında, bo=(-0.065n+1.005) eV şeklinde lineer bir bağlantı elde edildi.

References

  • [1] H. Tecimer, H. Uslu, Z.A. A. Lahmed, F. Yakuphanoglu, Ş. Altındal, On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs), Composites Part B, 57 (2014) 25-30.
  • [2] S. A. Yeriskin, M. Balbasi, A. Tataroĝlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped‐ PVA/n‐ Si (MPS) structures, J. Appl. Polym. Sci. 33:133 (2016) n/a-n/a.
  • [3] U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA: Zn/n-Si Schottky barrier diodes, Materials science in Semicond. Proces, 16:6 (2013) 1865-1872.
  • [4] A. Kaya, E. Maril, Ş. Altındal, I. Uslu, The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga 0.001Ox interfacial layer at room temperature, Microelectron. Eng. 149 (2016) 166-171.
  • [5] İ. Tasciglu, W.A. Farooq, R. Turan, Ş. Altındal, F. Yakuphanoglu, Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes, J. Alloys and Compd.,590 (2014) 157-161.
  • [6] E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes, Ş. Altındal, Physica Scripta, 90:9 (2015) 095801.
  • [7] Ç. Nuhoğlu, Ş. Aydoğan, A. Türüt, The barrier height inhomogeneity in identically prepared Pb/p-type Si Schottky barrier diotesSemicond. Sci. Technol. 18 (2003) 642.
  • [8] B.G. Kim, S.M. Cho, T.Y. Kim, H.M. Jang, Giant Dielectric Permittivity Observed in Pb-Based Perovskite Ferroelectrics, Phus. Rev. Lett., 86:15 (2001) 3404-3406.
  • [9] Xiaofeng Xu, Zhengkuan Jiao, Minyi Fu, Lixin Feng, Kaixun Xu, Rongqing Zuo, Xuezhi Chen , Physica C, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ, 417 (2005) 166-170.
  • [10] Y.Y. Wu, X.H. Wang, L.T. Li, Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics, Chin. Phys. B, 19:03 (2010).
  • [11] W. Jo, H.J. Cho, T.W. Noh, Y.S. Cho, S.I. Kwun, Y.T. Byun, S.H. Kim, Ferroelectrics Studies on structural and electro-optic properties of ferroelectric bismuth titanate thin films, 152 (1994) 139.
  • [12] P.C. Joshi, S.B. Krupanidhi, A. Mansingh, Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications, J. Appl. Phys. 73:11 (1993) 7627.
  • [13] A. Z. Simoes, A.H.M. Gonzalez, C.S. Riccardi, E.C. Souza, F. Moura, M. A. Zaghete, E. Longo, J.A. Varela, Ferroelectric and dielectric properties of lantha num modified bismuth titanate thin films obtained by the polymeric precursor method, Electroceram., 13:1-3 (2004) 65-70.
  • [14] Y.G. Lue, X.L. Liang, Y.H. Tan, X.J. Zheng, Y.Q. Gong and L. He, Acta Phys. Sin., 60 (2011) 027701.
  • [15] T.Q. Shao, T.L. Ren, C.G. Wei, X.N. Wang, C.X. Li, J.S. Liu, L.T. Liu, J. Zhu, Z.J. Li PZT Based MFS Structure for FeFET, Integr. Ferroelectr., 57 (2003) 1241.
  • [16] Z. Xu, L. Goux, B. Kaczer, H. Vander Meeren, D. Wouters, J. Grouseneken, Relevance of the pulsed capacitance–voltage measurement technique for the optimization of SrBi2Ta2O9/high-k stack combination to be used in FeFET devices, Microelectron. Eng. 83 (2006) 2564.
  • [17] M.S. Bozgeyik, J.S. Cross, H. Ishiwara, K. Shinozaki, Characteristics of metal-ferroelectric-insulator-semiconductor structure using Sr0.8Bi2.2Ta2O9 and Sr0.8Bi2.2Ta2O9-BaZrO3 for ferroelectric gates, Microelectron. Eng., 87:11 (2010) 2173-2177.
  • [18] M. Okuyama, Y. Ishibashi, Ferroelectric Thin Films Basic Properties And Device Physics for Memory Applications, New-York: Springer, 2005.
  • [19] S.Y. Wu, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor, IEEE Trans. Electron. Devices, 21:8 (1974) 499-504.
  • [20] F. Parlaktürk, Ş. Altındal, A. Tataroğlu, M. Parlak, A.A. Agasiev, On the profile of frequency dependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures, Microelectron. Eng. 85:1 (2007) 81.
  • [21] S.M. Yoon, E. Tokumitsu, H. Ishiwara, Ferroelectric neuron integrated circuits using SrBi/sub 2/Ta/sub 2/O/sub 9/-gate FET's and CMOS Schmitt-trigger oscillators, IEEE Trans. Electron. Dev., 47 (2000) 1630.
  • [22] M. Gökçen, M. Yıldırım, Investigation of the inhomogeneous barrier height of an Au/Bi4Ti3O12/n-Si structure through Gaussian distribution of barrier height, Chin. Phys. B, 21:12 (2012) 128502-128508.
  • [23] M. Yıldırım, P. Durmuş, Ş. Altındal, Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p-Si and Al/Bi4Ti3O12/p-Si structures by using the admittance spectroscopy method, Chin. Phys. B, 22:10 (2013) 108502.
  • [24] Ş. Altındal, H. Kanbur, A. Tatroğlu, M.M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B, 399:2 (2007) 146-154.
  • [25] P. Chattopadcyay, B. Raychhaudhuri, New technique for the determination of series resistance of Schottky barrier diodes, Solid States Electron., 35 (1992) 1023.
  • [26] S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1985.
  • [27] E.H. Rhoderick, Metal-Semiconductor Contacts, Oxford University Press, Oxford, 1978.
  • [28] M. Sağlam, F.E. Cimilli, A. Türüt, Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes, Physica B, 348 (2004) 397-403.
  • [29] G. Güler, Ş. Karataş, Ö. Güllü, Ö. F. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds 486 (2009) 343-347.
  • [30] S. Duman, S. Doğan, B. Gürbulak, A. Türüt, The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes, Appl. Phys. A, 91:2 (2008) 337-340.
  • [31] M.A. Yeganeh, R.K. Mamedov, Sh. Rahmatallahpur, Studying of barrier height and ideality factor relation in the nano sized Au-n type Si Schottky diodes, Superlattices and Microstructures, 50:1 (2011) 59-68.
  • [32] K. Akkiliç, A. Türüt, G. Çankaya, T. Kiliçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Commun., 125:10 (2003) 551-556.
  • [33] Ş. Altındal, H. Kanbur, A. Tataroğlu, M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B: Condensed Matter, 399 (2007) 146-154.
  • [34] Ö. Güllü, Ö. Barış, M. Biber, A. Türüt, Laterally inhomogeneous barrier analysis of the methyl violet/p-Si organic/inorganic hybrid Schottky structures, Applied Surface Science, 254 (2008) 3039-3044.
  • [35] K. Akkılıç, A. Türüt, G. Cankaya, T. Kılıçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Communications, 125 (2003) 551-556.
  • [36] B. Güzeldir, M. Sağlam, A. Ateş, Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method, Microelectronics Reliability, 51 (2011) 2179-2184.
  • [37] G. Güler, Ş. Karataş, Ö. Güllü, Ö. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds, 486 (2009) 343-347.
  • [38] R. T. Tung, Phs. Electron transport at metal-semiconductor interfaces: General theory, Rev. B., 45:13509 (1992).
  • [39] Mönch W., Phs. Rev. B., 37:7129 (1988).
  • [40] H. H. Guttler, J. H. Werner, Influence of barrier inhomogenities on noise at Schottky contacts, Appl. Phys. Lett. 56:12 (1990) 1113-1115.
  • [41] J. H. Werner, H. H. Guttler, Barrier inhomogeneities at Schottky contacts , J. Appl. Phys. 69:3 (1991) 1522-1533.

The barrier height (BH) and ideality factor (n) distribution in identically prepared Al/ Bi3Ti4O12/n-Si (MFS) structures

Year 2017, Volume: 5 Issue: 3, 89 - 96, 15.09.2017

Abstract

In this study, the values of barrier heights and ideality factors of identically fabricated Au/BTO/n-

Si (MFS) type SBDs (60 dots) have been obtained from their intercepts and slopes linear parts of

forward bias lnI vs V plots at room temperature. Experimental results show that these two

important parameters (BH and n) of the diodes change from diode to diode even if they are

identically prepared on same quarter n-Si wafer. These results are clearly important to understand

the physical origin of such non-ideal behavior so that it can be controlled in future such device

applications. High values of n can be attributed to the existence of a wide distribution of low

Schottky barrier height (SBH) patches, interfacial BTO layer and surface states. According to us,

the BH differences over the contact area are a result of inhomogeneity interfacial layer thickness

or composition and BH between metal, grain boundaries and semiconductor and non-uniformity

of the interfacial charges or dislocations.

References

  • [1] H. Tecimer, H. Uslu, Z.A. A. Lahmed, F. Yakuphanoglu, Ş. Altındal, On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs), Composites Part B, 57 (2014) 25-30.
  • [2] S. A. Yeriskin, M. Balbasi, A. Tataroĝlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped‐ PVA/n‐ Si (MPS) structures, J. Appl. Polym. Sci. 33:133 (2016) n/a-n/a.
  • [3] U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA: Zn/n-Si Schottky barrier diodes, Materials science in Semicond. Proces, 16:6 (2013) 1865-1872.
  • [4] A. Kaya, E. Maril, Ş. Altındal, I. Uslu, The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga 0.001Ox interfacial layer at room temperature, Microelectron. Eng. 149 (2016) 166-171.
  • [5] İ. Tasciglu, W.A. Farooq, R. Turan, Ş. Altındal, F. Yakuphanoglu, Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes, J. Alloys and Compd.,590 (2014) 157-161.
  • [6] E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes, Ş. Altındal, Physica Scripta, 90:9 (2015) 095801.
  • [7] Ç. Nuhoğlu, Ş. Aydoğan, A. Türüt, The barrier height inhomogeneity in identically prepared Pb/p-type Si Schottky barrier diotesSemicond. Sci. Technol. 18 (2003) 642.
  • [8] B.G. Kim, S.M. Cho, T.Y. Kim, H.M. Jang, Giant Dielectric Permittivity Observed in Pb-Based Perovskite Ferroelectrics, Phus. Rev. Lett., 86:15 (2001) 3404-3406.
  • [9] Xiaofeng Xu, Zhengkuan Jiao, Minyi Fu, Lixin Feng, Kaixun Xu, Rongqing Zuo, Xuezhi Chen , Physica C, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ, 417 (2005) 166-170.
  • [10] Y.Y. Wu, X.H. Wang, L.T. Li, Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics, Chin. Phys. B, 19:03 (2010).
  • [11] W. Jo, H.J. Cho, T.W. Noh, Y.S. Cho, S.I. Kwun, Y.T. Byun, S.H. Kim, Ferroelectrics Studies on structural and electro-optic properties of ferroelectric bismuth titanate thin films, 152 (1994) 139.
  • [12] P.C. Joshi, S.B. Krupanidhi, A. Mansingh, Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications, J. Appl. Phys. 73:11 (1993) 7627.
  • [13] A. Z. Simoes, A.H.M. Gonzalez, C.S. Riccardi, E.C. Souza, F. Moura, M. A. Zaghete, E. Longo, J.A. Varela, Ferroelectric and dielectric properties of lantha num modified bismuth titanate thin films obtained by the polymeric precursor method, Electroceram., 13:1-3 (2004) 65-70.
  • [14] Y.G. Lue, X.L. Liang, Y.H. Tan, X.J. Zheng, Y.Q. Gong and L. He, Acta Phys. Sin., 60 (2011) 027701.
  • [15] T.Q. Shao, T.L. Ren, C.G. Wei, X.N. Wang, C.X. Li, J.S. Liu, L.T. Liu, J. Zhu, Z.J. Li PZT Based MFS Structure for FeFET, Integr. Ferroelectr., 57 (2003) 1241.
  • [16] Z. Xu, L. Goux, B. Kaczer, H. Vander Meeren, D. Wouters, J. Grouseneken, Relevance of the pulsed capacitance–voltage measurement technique for the optimization of SrBi2Ta2O9/high-k stack combination to be used in FeFET devices, Microelectron. Eng. 83 (2006) 2564.
  • [17] M.S. Bozgeyik, J.S. Cross, H. Ishiwara, K. Shinozaki, Characteristics of metal-ferroelectric-insulator-semiconductor structure using Sr0.8Bi2.2Ta2O9 and Sr0.8Bi2.2Ta2O9-BaZrO3 for ferroelectric gates, Microelectron. Eng., 87:11 (2010) 2173-2177.
  • [18] M. Okuyama, Y. Ishibashi, Ferroelectric Thin Films Basic Properties And Device Physics for Memory Applications, New-York: Springer, 2005.
  • [19] S.Y. Wu, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor, IEEE Trans. Electron. Devices, 21:8 (1974) 499-504.
  • [20] F. Parlaktürk, Ş. Altındal, A. Tataroğlu, M. Parlak, A.A. Agasiev, On the profile of frequency dependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures, Microelectron. Eng. 85:1 (2007) 81.
  • [21] S.M. Yoon, E. Tokumitsu, H. Ishiwara, Ferroelectric neuron integrated circuits using SrBi/sub 2/Ta/sub 2/O/sub 9/-gate FET's and CMOS Schmitt-trigger oscillators, IEEE Trans. Electron. Dev., 47 (2000) 1630.
  • [22] M. Gökçen, M. Yıldırım, Investigation of the inhomogeneous barrier height of an Au/Bi4Ti3O12/n-Si structure through Gaussian distribution of barrier height, Chin. Phys. B, 21:12 (2012) 128502-128508.
  • [23] M. Yıldırım, P. Durmuş, Ş. Altındal, Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p-Si and Al/Bi4Ti3O12/p-Si structures by using the admittance spectroscopy method, Chin. Phys. B, 22:10 (2013) 108502.
  • [24] Ş. Altındal, H. Kanbur, A. Tatroğlu, M.M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B, 399:2 (2007) 146-154.
  • [25] P. Chattopadcyay, B. Raychhaudhuri, New technique for the determination of series resistance of Schottky barrier diodes, Solid States Electron., 35 (1992) 1023.
  • [26] S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1985.
  • [27] E.H. Rhoderick, Metal-Semiconductor Contacts, Oxford University Press, Oxford, 1978.
  • [28] M. Sağlam, F.E. Cimilli, A. Türüt, Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes, Physica B, 348 (2004) 397-403.
  • [29] G. Güler, Ş. Karataş, Ö. Güllü, Ö. F. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds 486 (2009) 343-347.
  • [30] S. Duman, S. Doğan, B. Gürbulak, A. Türüt, The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes, Appl. Phys. A, 91:2 (2008) 337-340.
  • [31] M.A. Yeganeh, R.K. Mamedov, Sh. Rahmatallahpur, Studying of barrier height and ideality factor relation in the nano sized Au-n type Si Schottky diodes, Superlattices and Microstructures, 50:1 (2011) 59-68.
  • [32] K. Akkiliç, A. Türüt, G. Çankaya, T. Kiliçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Commun., 125:10 (2003) 551-556.
  • [33] Ş. Altındal, H. Kanbur, A. Tataroğlu, M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B: Condensed Matter, 399 (2007) 146-154.
  • [34] Ö. Güllü, Ö. Barış, M. Biber, A. Türüt, Laterally inhomogeneous barrier analysis of the methyl violet/p-Si organic/inorganic hybrid Schottky structures, Applied Surface Science, 254 (2008) 3039-3044.
  • [35] K. Akkılıç, A. Türüt, G. Cankaya, T. Kılıçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Communications, 125 (2003) 551-556.
  • [36] B. Güzeldir, M. Sağlam, A. Ateş, Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method, Microelectronics Reliability, 51 (2011) 2179-2184.
  • [37] G. Güler, Ş. Karataş, Ö. Güllü, Ö. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds, 486 (2009) 343-347.
  • [38] R. T. Tung, Phs. Electron transport at metal-semiconductor interfaces: General theory, Rev. B., 45:13509 (1992).
  • [39] Mönch W., Phs. Rev. B., 37:7129 (1988).
  • [40] H. H. Guttler, J. H. Werner, Influence of barrier inhomogenities on noise at Schottky contacts, Appl. Phys. Lett. 56:12 (1990) 1113-1115.
  • [41] J. H. Werner, H. H. Guttler, Barrier inhomogeneities at Schottky contacts , J. Appl. Phys. 69:3 (1991) 1522-1533.
There are 41 citations in total.

Details

Journal Section Original Articles
Authors

Hayriye Gökçen Çetinkaya This is me

Publication Date September 15, 2017
Submission Date September 15, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Çetinkaya, H. G. (2017). The barrier height (BH) and ideality factor (n) distribution in identically prepared Al/ Bi3Ti4O12/n-Si (MFS) structures. Gazi University Journal of Science Part C: Design and Technology, 5(3), 89-96.

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526