Research Article
BibTex RIS Cite

Burkulma Mukavemetine Göre Eşit Miktarda Filament Kullanımı İle 3 Boyutlu Baskısı Yapılacak Ankastre Kirişlerin Kesit Geometri Biçimlerinin Performansı

Year 2017, Volume: 5 Issue: 4, 169 - 177, 22.12.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.306522

Abstract

Bu çalışmada, aynı kesit alan ve
uzunluktaki, eşit miktarlarda filament kullanımı ile 3 boyutlu baskısı
yapılacak ankastre kirişler için burkulma mukavemeti yönünden en iyi mekaniksel
özelliği sağlayan kesit geometrilerinin belirlenmesi hedeflenmiştir.
Böylelikle, hızlı modellemede ve plastik parçaların üretiminde sıkça kullanılan
filamentin miktarından, üretim zamanından ve harcanan enerjiden bağımsız bir
şekilde tasarımlar arasında performansa göre bir sıralama yapılmıştır. Ankastre
kirişlerin tasarımların uzunluğu ve uygulanan kuvvetler sabit tutulmuş, içi
dolu temel kesit
geometri biçimleri (Çember, dikdörtgen, eşkenar üçgen, paralel kenar, elips ve
köşeleri yuvarlatılmış dikdörtgen) değiştirilmiştir. Ayrıca, dört farklı
filament malzemesi de burkulma mukavemeti yönünden karşılaştırılmıştır. 6 kesit
şekline, 101 kesit alanına ve 4 farklı malzemeye bağlı olarak toplam 2424 adet
tasarım alternatifi oluşturulmuştur. Bu tasarım alternatifleri, önce matematiksel olarak modellenmiş, daha sonra
sonlu elemanlar yöntemi (FEM) ve regresyon analizi ile test edilmiştir. Tüm modellerin istatiksel analizleri yapılarak
karşılaştırılmıştır. Yapılan analizler sonucunda, en düşükten büyüğe doğru,
gerilme ve deformasyona uğrayan kesit geometrileri sıralanmıştır.

References

  • Biggins P, Hiltz J, Kusterbeck A. Bio-inspried Materials and Sensing Systems. Cambridge: RSC Pub; 2011.
  • Milovanović J, Trajanović M. Medıcal applications of rapid prototyping. Mechanical Engineering 2007; 5:79 – 85.
  • Gibson I. Advanced Manufacturing Technology for Medical Applications: Reverse Engineering. Software Conversion and Rapid Prototyping. West Sussex:John Wiley & Sons; 2005.
  • Subhransu Mohapatra, Prasad Dasappa Numerical Prediction of Stiffness and Strength of a Highly Complex Topology Optimized Thermoplastic Part designed for 3D Printing SPE ANTEC™ Indianapolis 2016.
  • Lars Krog, A. T. Application of Topology, Sizing and Shape Optimization Methods to Optimal Design of Aircraft Components. Retrieved from Altair product design 2011.
  • Baich, Liseli, and Guha Manogharan. "Study of infill print parameters on mechanical strength and production cost-time of 3D printed ABS parts." International Solid Freeform Fabrication Symposium, Austin, TX. 2015.
  • M. Iliescu E. Nuţu, B. Comănescu Applied Finite Element Method Simulation in 3D Printing, Internatıonal Journal Of Mathematıcs And Computers In Sımulatıon, Issue 4, Volume 2, 2008, 305-312.
  • Russell C. Hibbeler, Mechanics Of Materials, Pearson Education Canada 2011.
  • ANSYS Manual.

Performance Of Cross Sectional Geometries Of Beams According To Buckling Strength Which Are 3d Printed With The Same Amount Of Filament

Year 2017, Volume: 5 Issue: 4, 169 - 177, 22.12.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.306522

Abstract

Aim of
this study is to determine the cross sectional geometries of beams which have
better response to buckling with the usage of same amount of filament. These
beams have the same cross sectional area and length. Thus, design points were
sorted freely without the consideration of the amount of filament, printing
time and energy consumption. Length of beams and applied forces were kept
constant for each design point, besides that basic cross sectional geometries
were changed for each design series. These geometries were selected as, circle,
rectangle, equilateral triangle, rhombus (diamond), ellipse and rounded
rectangle. Moreover four different printing material were taken into
consideration for comparison according to buckling. Depending on 6 different
cross sectional shape, 101 cross sectional area and 4 material, totally 2424
design alternatives were built. Firstly, mathematical model of these designs
were constructed, then they were tested by using finite element method (FEM)
and regression analysis. All model branches were compared to each other with
the statistical analysis. As a result of all analyses, design alternatives were
sorted according to mechanical strength.

References

  • Biggins P, Hiltz J, Kusterbeck A. Bio-inspried Materials and Sensing Systems. Cambridge: RSC Pub; 2011.
  • Milovanović J, Trajanović M. Medıcal applications of rapid prototyping. Mechanical Engineering 2007; 5:79 – 85.
  • Gibson I. Advanced Manufacturing Technology for Medical Applications: Reverse Engineering. Software Conversion and Rapid Prototyping. West Sussex:John Wiley & Sons; 2005.
  • Subhransu Mohapatra, Prasad Dasappa Numerical Prediction of Stiffness and Strength of a Highly Complex Topology Optimized Thermoplastic Part designed for 3D Printing SPE ANTEC™ Indianapolis 2016.
  • Lars Krog, A. T. Application of Topology, Sizing and Shape Optimization Methods to Optimal Design of Aircraft Components. Retrieved from Altair product design 2011.
  • Baich, Liseli, and Guha Manogharan. "Study of infill print parameters on mechanical strength and production cost-time of 3D printed ABS parts." International Solid Freeform Fabrication Symposium, Austin, TX. 2015.
  • M. Iliescu E. Nuţu, B. Comănescu Applied Finite Element Method Simulation in 3D Printing, Internatıonal Journal Of Mathematıcs And Computers In Sımulatıon, Issue 4, Volume 2, 2008, 305-312.
  • Russell C. Hibbeler, Mechanics Of Materials, Pearson Education Canada 2011.
  • ANSYS Manual.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Original Articles
Authors

Hüseyin Alp Çetindağ

İhsan Toktaş

Murat Tolga Özkan

Publication Date December 22, 2017
Submission Date April 16, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Çetindağ, H. A., Toktaş, İ., & Özkan, M. T. (2017). Performance Of Cross Sectional Geometries Of Beams According To Buckling Strength Which Are 3d Printed With The Same Amount Of Filament. Gazi University Journal of Science Part C: Design and Technology, 5(4), 169-177. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.306522

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526