Research Article
BibTex RIS Cite

Güç Kaynakları İçin Yüksek Verimli Güç Faktörü Düzeltme Devresi Tasarımı

Year 2017, Volume: 5 Issue: 4, 187 - 199, 22.12.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.350222

Abstract

Anahtarlamalı güç
kaynakları için güç faktörü düzeltme devreleri tasarlamak enerjinin verimli
kullanılabilmesi açısından son yıllarda önemli hale gelmiştir. Güç faktörü
düzeltme (GFD) teknikleri, yüksek güç yoğunluğu ve enerji verimliliği açısından
çok önemli bir rol oynamaktadır. Bu amaçla temel yükseltici GFD devrelerinin
yanında, köprüsüz GFD topolojileri ve kontrol stratejileri geliştirilmiştir.
Köprüsüz yapılar kullanılarak, devredeki kayıplar azaltılarak güç yoğunluğu
arttırılabilir. Bu makalede, köprüsüz GFD yapıları incelenerek, kayıplar ve güç
faktörü açısından performansları karşılaştırılmıştır. Yüksek güç seviyelerinde
yaygın bir şekilde kullanılan yarı köprü çift yükseltici yapılı GFD devresi
analiz edilmiş ve akım modlu kontrol yöntemi uygulanarak tasarlanan devrenin
benzetimi PSIM programında yapılmıştır. 900 W' lık yarı köprü çift yükseltici
yapılı GFD devresinin bir prototipi gerçekleştirilmiş ve devreden elde edilen
sonuçlar sunulmuştur.

References

  • KAYNAKLAR (REFERENCES) [1] Rustom, K., Batarseh, I., “Recent advances in single stage power factor correction”, In Industrial Technology, IEEE International Conference, Maribor, 1089-1095, 2003. DOI: 10.1109/ICIT.2003.1290815
  • [2] Kim, Y.S., Lee, B.K., L. J.W., “Topology characteristics analysis and performance comparison for optimal design of high efficiency PFC circuit for telecom”, IEEE International Telecommunications Energy Conference (INTELEC), Amsterdam, 1-7, 2011. DOI: 10.1109/INTLEC.2011.6099764
  • [3] Huber, L., Jang, Y., Jovanovic, M.M., “Performance Evaluation of Bridgeless PFC Boost Rectifiers”, IEEE Transactions on Power Electronics, 23 (3), 1381 – 1390, 2008. DOI: 10.1109/TPEL.2008.921107
  • [4] Kong, P., Wang, S., LEE, F.C., “Common Mode EMI Noise Suppression for Bridgeless PFC Converters”, IEEE Transactions on Power Electronics, 23 (1), 291 –297, 2008. DOI: 10.1109/TPEL.2007.911877
  • [5] Mahdavi, M., Farzanehfard, H., “New Bridgeless PFC Converter with Reduced Components,” International Conference on Electronic Devices, Systems and Applications (ICEDSA), Kuala Kumpur, 125-130, 2011.
  • [6] Tollik, D., Pietkiewicz, A., “Comparative analysis of 1-phase active power factor correction topologies”, International Telecommunication Energy Conference (INTELEC), Washington, 517-523, 1992. DOI: 10.1109/INTLEC.1992.268393
  • [7] Salmon, J.C., “Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase ac supplies and using either single or split dc rail voltage outputs”, IEEE Applied Power Electronics (APEC) Conference, Dallas, 473-479, 1995. DOI: 10.1109/APEC.1995.468990
  • [8] Gopinath, M., “Bridgeless PFC Converter for Power Factor Correction”, International Journal of Advanced Engineering Sciences and Technologies, 9 (1), 49–54, 2011.
  • [9] Souza, A.F., Barbi, I., “High power factor rectifier with reduced conduction and commutation losses”, International Telecommunication Energy Conference (INTELEC), Copenhagen 1999. DOI: 10.1109/INTLEC.1999.794044
  • [10] Ernöand, T., Frisch, M.., “Second generation of PFC solutions”, Power Electronics Europe, 7, 33-35, 2004.
  • [11] Erickson, R.W., Maksimovic, D., “Fundamentals of Power Electronics”, Kluwer, New York, 2001.
  • [12] Lai, J.S., Chen, D., “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode”, Applied Power Electronics Conference, San Diego, 267-273, 1993. DOI: 10.1109/APEC.1993.290621
  • [13] Ucc28070 datasheet, Texas Instruments, Dallas, Texas, USA, 2016.
  • [14] Ucc28070 300W interleaved pfc pre-regulator user’s guide-sluu321, Texas Instruments, Dallas, Texas, USA, 2008.
  • [15] Ucc28070 300W Interleaved Pfc Pre-Regulator Design Review-SLUA479 Application Report, Texas Instruments, Dallas, Texas, USA, 2016.
  • [16] O’Loughlin, M., “350W Two Phase Interleaved PFC Pre-regulator Design Review”, Texas Instrument Literature Number SLUA369 Application Report, Texas Instruments, Dallas, Texas, USA, 2006.
  • [17] Zumel, P., Garcia, O., Cobos, J.A., Uceda, J., “EMI Reduction by Interleaving of Power Converters”, IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 688-694, 2004. DOI: 10.1109/APEC.2004.1295894
  • [18] O’Loughlin, M., “An Interleaving PFC Pre-Regulator For High-Power Converters”, Unitrode/TI Power Supply Design Seminar SEM-1700, Topic 5, Texas Instruments, Dallas, Texas, USA, 2015.
  • [19] Choi, W.Y., Kwon, J. M., “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” IET Power Electronics, 1 (2), 194-202, 2008.

Design of The High Efficiency Power Factor Correction Circuit for Power Supply

Year 2017, Volume: 5 Issue: 4, 187 - 199, 22.12.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.350222

Abstract

Designing
power factor correction circuits for switched power supplies has become
important in recent years in terms of efficient use of energy. Power factor
correction techniques play a significant role in high power density and energy
efficiency. For these purposes, bridgeless PFC topologies and control
strategies have been developed alongside basic boost PFC circuits. The power
density can be increased using bridgeless structures by means of reducing
losses in the circuit. This article examines bridgeless PFC structures and compares
their performances in terms of losses and power factor. A semi-bridgeless PFC,
which is widely used at high power levels, was analyzed and simulated. The
designed circuit simulation using the current mode control method was performed
in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was
implemented and the results obtained from the circuit are presented

References

  • KAYNAKLAR (REFERENCES) [1] Rustom, K., Batarseh, I., “Recent advances in single stage power factor correction”, In Industrial Technology, IEEE International Conference, Maribor, 1089-1095, 2003. DOI: 10.1109/ICIT.2003.1290815
  • [2] Kim, Y.S., Lee, B.K., L. J.W., “Topology characteristics analysis and performance comparison for optimal design of high efficiency PFC circuit for telecom”, IEEE International Telecommunications Energy Conference (INTELEC), Amsterdam, 1-7, 2011. DOI: 10.1109/INTLEC.2011.6099764
  • [3] Huber, L., Jang, Y., Jovanovic, M.M., “Performance Evaluation of Bridgeless PFC Boost Rectifiers”, IEEE Transactions on Power Electronics, 23 (3), 1381 – 1390, 2008. DOI: 10.1109/TPEL.2008.921107
  • [4] Kong, P., Wang, S., LEE, F.C., “Common Mode EMI Noise Suppression for Bridgeless PFC Converters”, IEEE Transactions on Power Electronics, 23 (1), 291 –297, 2008. DOI: 10.1109/TPEL.2007.911877
  • [5] Mahdavi, M., Farzanehfard, H., “New Bridgeless PFC Converter with Reduced Components,” International Conference on Electronic Devices, Systems and Applications (ICEDSA), Kuala Kumpur, 125-130, 2011.
  • [6] Tollik, D., Pietkiewicz, A., “Comparative analysis of 1-phase active power factor correction topologies”, International Telecommunication Energy Conference (INTELEC), Washington, 517-523, 1992. DOI: 10.1109/INTLEC.1992.268393
  • [7] Salmon, J.C., “Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase ac supplies and using either single or split dc rail voltage outputs”, IEEE Applied Power Electronics (APEC) Conference, Dallas, 473-479, 1995. DOI: 10.1109/APEC.1995.468990
  • [8] Gopinath, M., “Bridgeless PFC Converter for Power Factor Correction”, International Journal of Advanced Engineering Sciences and Technologies, 9 (1), 49–54, 2011.
  • [9] Souza, A.F., Barbi, I., “High power factor rectifier with reduced conduction and commutation losses”, International Telecommunication Energy Conference (INTELEC), Copenhagen 1999. DOI: 10.1109/INTLEC.1999.794044
  • [10] Ernöand, T., Frisch, M.., “Second generation of PFC solutions”, Power Electronics Europe, 7, 33-35, 2004.
  • [11] Erickson, R.W., Maksimovic, D., “Fundamentals of Power Electronics”, Kluwer, New York, 2001.
  • [12] Lai, J.S., Chen, D., “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode”, Applied Power Electronics Conference, San Diego, 267-273, 1993. DOI: 10.1109/APEC.1993.290621
  • [13] Ucc28070 datasheet, Texas Instruments, Dallas, Texas, USA, 2016.
  • [14] Ucc28070 300W interleaved pfc pre-regulator user’s guide-sluu321, Texas Instruments, Dallas, Texas, USA, 2008.
  • [15] Ucc28070 300W Interleaved Pfc Pre-Regulator Design Review-SLUA479 Application Report, Texas Instruments, Dallas, Texas, USA, 2016.
  • [16] O’Loughlin, M., “350W Two Phase Interleaved PFC Pre-regulator Design Review”, Texas Instrument Literature Number SLUA369 Application Report, Texas Instruments, Dallas, Texas, USA, 2006.
  • [17] Zumel, P., Garcia, O., Cobos, J.A., Uceda, J., “EMI Reduction by Interleaving of Power Converters”, IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 688-694, 2004. DOI: 10.1109/APEC.2004.1295894
  • [18] O’Loughlin, M., “An Interleaving PFC Pre-Regulator For High-Power Converters”, Unitrode/TI Power Supply Design Seminar SEM-1700, Topic 5, Texas Instruments, Dallas, Texas, USA, 2015.
  • [19] Choi, W.Y., Kwon, J. M., “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” IET Power Electronics, 1 (2), 194-202, 2008.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Original Articles
Authors

Atiye Hülya Obdan

Ali Osman Çınar This is me

Publication Date December 22, 2017
Submission Date November 9, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Obdan, A. H., & Çınar, A. O. (2017). Design of The High Efficiency Power Factor Correction Circuit for Power Supply. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 5(4), 187-199. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.350222

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526