Research Article
BibTex RIS Cite

Grafen Nanolevha Takviyesinin AlSi10Mg Alaşımının Mikroyapı ve Mekanik Özellikleri Üzerine Etkisi

Year 2018, Volume: 6 Issue: 1, 177 - 187, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.334577

Abstract

Bu çalışmada, birkaç
grafen tabakasından oluşan, 100 nm’nin altında kalınlığa ve olağanüstü mekanik
özelliklere sahip grafen nanolevhaların (GNL) endüstride sıkça kullanılan
AlSi10Mg alaşımına katkısının mikroyapı ve mekanik özellikler üzerine etkisi
incelenmiştir. Büyük yüzey alanı ve sahip oldukları yüksek yüzey enerjileri
nedeniyle GNL’ların sıvı metaller içinde homojen olarak dağıtılması güçtür.
GNL’ların sıvı alüminyum alaşımına geçişi yarı-katı mekanik karıştırma ile
matris içinde dağılımı ise ultrasonik proses ile gerçekleştirilmiştir. Dökülen
kompozitlerin yapılan mikroyapı analizleri sonucunda, yüksek yoğunluktaki
ultrasonik dalgalar ile GNL’ların aglomerasyonlarının önlenerek matris içinde
görece homojen olarak dağıtıldığı ve matris-GNL’lar arasında iyi bir tutunma
yüzeyinin elde edildiği gösterilmiştir. Gerçekleştirilen çekme deneylerinde,
ağırlıkça %0.25 GNL takviyesinin alaşımın mukavemetini önemli oranda arttırdığı
tespit edilmiştir. Mukavemetteki iyileşme ağırlıklı olarak GNL’ların
dislokasyonların ilerlemesinde bariyer vazifesi görmesine dayandırılmaktadır.
Bu sonuçlar GNL takviyeli yüksek performanslı metal matrisli nanokompozitlerin
seri imalata uygun olarak sıvı fazda üretilebilirliklerini göstermektedir.

References

  • Y. Yang, J. Lan, X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A, 380: 1-2 (2004) 378-383.
  • S. F. Hassan, M. Gupta, Effect of nano-ZrO2 particulates reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. Journal of Composite Materials, 41: 21 (2007) 2533-2543.
  • A. Mazahery, H. Abdizadeh, H. R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites. Materials Science and Engineering A, 518: 1-2 (2009) 61-64.
  • H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 47: 3 (2009) 570-577.
  • S. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – A review. International Materials Reviews, 55: 1 (2010) 41-64.
  • E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology, 70: 16 (2010) 2228-2236.
  • A. K. Geim, K. S. Novoselov, The rise of graphene. Nature Materials, 6: (2007) 183-191.
  • C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 5887 (2008) 385-388.
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, F. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Letters, 8: 3 (2008) 902-907.
  • S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials. Nature, 442: 7100 (2006) 282-286.
  • T. Kuilla, S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, J. H. Lee, Recent advances in graphene based polymer composites. Progress in Polymer Science, 35: 11 (2010) 1350-1375.
  • L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F. E. Pfefferkorn, X. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 67: 1 (2012) 29-32.
  • S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene-aluminum nanocomposites. Materials Science and Engineering A, 528: 27 (2011) 7933-7937.
  • J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 66: 8 (2012) 594-597.
  • R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds, 615: (2014) 578-582.
  • J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, S. L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Materials Science and Engineering A, 626: (2015) 400-405.
  • J. C. Lee, J. Y. Byun, S. B. Park, H. I. Lee, Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Materialia, 46: 5 (1998) 1771-1780.
  • N. Eustathopoulos, J. C. Joud, P. Desre, J. M. Hicter, The wetting of carbon by aluminium and aluminium alloys. Journal of Materials Science, 9: 8 (1974) 1233-1242.
  • M. P. De Cicco, L. S. Turng, X. Li, J. H. Perepezko, Nucleation catalysis in aluminum alloy A356 using nanoscale inoculants. Metallurgical and Materials Transactions A, 42: 8 (2011) 2323-2330.
  • L. Ci, Z. Ryu, N. Y. Jin-Phillipp, M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia, 54: 20 (2006) 5367-5375.
  • K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara, M. M. Mdleleni, M. Wong, Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London A, 357: 1751 (1999) 335-353.
  • H. Yan, Z. Huang, H. Qui, Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing. Metallurgical and Materials Transactions A, 48: 2 (2017) 910-918.
  • Y. L. Li, T. G. Zhou, Achieving Al melt/carbon and Al-Ti melts/carbon interfaces wetting via ultrasonic couple processing. Metallurgical and Materials Transactions A, 44: 7 (2013) 3337-3343.
  • D. J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 39: 1 (1994) 1-23.
Year 2018, Volume: 6 Issue: 1, 177 - 187, 30.03.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.334577

Abstract

References

  • Y. Yang, J. Lan, X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A, 380: 1-2 (2004) 378-383.
  • S. F. Hassan, M. Gupta, Effect of nano-ZrO2 particulates reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. Journal of Composite Materials, 41: 21 (2007) 2533-2543.
  • A. Mazahery, H. Abdizadeh, H. R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites. Materials Science and Engineering A, 518: 1-2 (2009) 61-64.
  • H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 47: 3 (2009) 570-577.
  • S. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – A review. International Materials Reviews, 55: 1 (2010) 41-64.
  • E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology, 70: 16 (2010) 2228-2236.
  • A. K. Geim, K. S. Novoselov, The rise of graphene. Nature Materials, 6: (2007) 183-191.
  • C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 5887 (2008) 385-388.
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, F. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Letters, 8: 3 (2008) 902-907.
  • S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials. Nature, 442: 7100 (2006) 282-286.
  • T. Kuilla, S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, J. H. Lee, Recent advances in graphene based polymer composites. Progress in Polymer Science, 35: 11 (2010) 1350-1375.
  • L. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J. Xu, H. Choi, H. Xu, F. E. Pfefferkorn, X. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 67: 1 (2012) 29-32.
  • S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene-aluminum nanocomposites. Materials Science and Engineering A, 528: 27 (2011) 7933-7937.
  • J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 66: 8 (2012) 594-597.
  • R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds, 615: (2014) 578-582.
  • J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, S. L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Materials Science and Engineering A, 626: (2015) 400-405.
  • J. C. Lee, J. Y. Byun, S. B. Park, H. I. Lee, Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Materialia, 46: 5 (1998) 1771-1780.
  • N. Eustathopoulos, J. C. Joud, P. Desre, J. M. Hicter, The wetting of carbon by aluminium and aluminium alloys. Journal of Materials Science, 9: 8 (1974) 1233-1242.
  • M. P. De Cicco, L. S. Turng, X. Li, J. H. Perepezko, Nucleation catalysis in aluminum alloy A356 using nanoscale inoculants. Metallurgical and Materials Transactions A, 42: 8 (2011) 2323-2330.
  • L. Ci, Z. Ryu, N. Y. Jin-Phillipp, M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia, 54: 20 (2006) 5367-5375.
  • K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara, M. M. Mdleleni, M. Wong, Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London A, 357: 1751 (1999) 335-353.
  • H. Yan, Z. Huang, H. Qui, Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing. Metallurgical and Materials Transactions A, 48: 2 (2017) 910-918.
  • Y. L. Li, T. G. Zhou, Achieving Al melt/carbon and Al-Ti melts/carbon interfaces wetting via ultrasonic couple processing. Metallurgical and Materials Transactions A, 44: 7 (2013) 3337-3343.
  • D. J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 39: 1 (1994) 1-23.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Sinan Kandemir 0000-0001-6987-2737

Publication Date March 30, 2018
Submission Date August 14, 2017
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Kandemir, S. (2018). Grafen Nanolevha Takviyesinin AlSi10Mg Alaşımının Mikroyapı ve Mekanik Özellikleri Üzerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(1), 177-187. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.334577

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526