Research Article
BibTex RIS Cite

MEDİKAL İMPLANT HABERLEŞME SİSTEMLERİ İÇİN BANDGENİŞLİĞİ VERİMLİ ÖRTÜŞMELİ FSK KODLAMALI GÜVENLİ KOMUT İLETİMİ

Year 2018, Volume: 6 Issue: 2, 250 - 258, 30.06.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.288622

Abstract

Günümüzde kablosuz iletişim çoğu sağlık sisteminde yer
almaktadır. Implante edilebilen medikal sistemler de kablosuz iletişim
yeteneğine sahiptirler. Fakat bu sistemlerde kablosuz iletişimin güvenli olması
hem hasta hakları hem de hasta sağlığı açısından çok önemlidir. Bu nedenle
kablosuz implante edilebilen medikal sistemlerinin iletimlerinin güvenli olması,
aktif ve pasif saldırganlara karşı korunması gerekir. Bu çalışmada, özel bir
örtüşmeli ve kodlamalı frekans kaydırmalı anahtarlama tekniği geliştirilmiş ve
bu teknikle komut iletiminde düşük karmaşıklıklı güvenlik sağlanmıştır.
Önerilen yöntem düşük karmaşıklık ve güvenlik yanında band genişliği verimliliği
de sağladığından kablosuz implante edilebilen medikal sistemler için uygun
durmaktadır.

References

  • M. Rushanan, A. D. Rubin, D. F. Kune and C. M. Swanson, "SoK: Security and Privacy in Implantable Medical Devices and Body Area Networks," 2014 IEEE Symposium on Security and Privacy, San Jose, CA, 2014, pp. 524-539.
  • J. Choi, J. Ha and H. Jeon, "Physical layer security for wireless sensor networks," 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, 2013, pp. 1-6.
  • [3] T. Denning, K. Fu, and T. Kohno, “Absence makes the heart grow fonder:New directions for implantable medical device security,” in Proceedings of the 3rd Conference on Hot Topics in Security, ser. HOTSEC’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 5:1–5:7. [Online].
  • [4] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li, Imdguard: Securing implantable medical devices with the external wearable guardian,” in INFOCOM, 2011 Proceedings IEEE, April 2011, pp. 1862–1870.
  • [5] M. Zhang, A. Raghunathan, and N. Jha, “Medmon: Securing medical devices through wireless monitoring and anomaly detection,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6, pp.871–881, Dec 2013.
  • [6] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu, “They can hear your heartbeats: Non-invasive security for implantable medical devices,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 2–13, Aug. 2011.
  • [7] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. Maisel, “Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses,” in IEEE Symposium on Security and Privacy (SP), May 2008,
  • [8] M. Zhang, A. Raghunathan, and N. Jha, “Trustworthiness of medical devices and body area networks,” Proceedings of the IEEE, vol. 102,no. 8, pp. 1174–1188, Aug 2014.
  • [9] MICS Medical Implant Communication Services, FCC 47CFR95.601– 95.673 Subpart E/I Rules for MedRadio Services, Federal Communications Commission Std.
  • [10] ITU-R Recommendation RS.1346: Sharing between the meteorological aids service and medical implant communication systems (MICS) operating in the mobile service in the frequency band 401–406 MHz, 1998.,
  • [11] Y.-H. Liu, C.-J. Tung, and T.-H. Lin, “A low-power asymmetrical mics wireless interface and transceiver design for medical imaging,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov 2006, pp.162–165.
  • [12] K. Zhu, M. Haider, S. Yuan, and S. Islam, “A sub-1 ua low-power fsk modulator for biomedical sensor circuits,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 2010, pp. 265–268.
  • [13] S. Kulac¸ and H. Arslan, "Reliable listen-before-talk mechanism for medical implant communication systems," 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, 2016,pp.1-4.doi:10.1109/HealthCom.2016.7749531
  • [14][Online].Available: http://www.top500.org/lists/2016/11/
Year 2018, Volume: 6 Issue: 2, 250 - 258, 30.06.2018
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.288622

Abstract

References

  • M. Rushanan, A. D. Rubin, D. F. Kune and C. M. Swanson, "SoK: Security and Privacy in Implantable Medical Devices and Body Area Networks," 2014 IEEE Symposium on Security and Privacy, San Jose, CA, 2014, pp. 524-539.
  • J. Choi, J. Ha and H. Jeon, "Physical layer security for wireless sensor networks," 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, 2013, pp. 1-6.
  • [3] T. Denning, K. Fu, and T. Kohno, “Absence makes the heart grow fonder:New directions for implantable medical device security,” in Proceedings of the 3rd Conference on Hot Topics in Security, ser. HOTSEC’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 5:1–5:7. [Online].
  • [4] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li, Imdguard: Securing implantable medical devices with the external wearable guardian,” in INFOCOM, 2011 Proceedings IEEE, April 2011, pp. 1862–1870.
  • [5] M. Zhang, A. Raghunathan, and N. Jha, “Medmon: Securing medical devices through wireless monitoring and anomaly detection,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6, pp.871–881, Dec 2013.
  • [6] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu, “They can hear your heartbeats: Non-invasive security for implantable medical devices,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 2–13, Aug. 2011.
  • [7] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. Maisel, “Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses,” in IEEE Symposium on Security and Privacy (SP), May 2008,
  • [8] M. Zhang, A. Raghunathan, and N. Jha, “Trustworthiness of medical devices and body area networks,” Proceedings of the IEEE, vol. 102,no. 8, pp. 1174–1188, Aug 2014.
  • [9] MICS Medical Implant Communication Services, FCC 47CFR95.601– 95.673 Subpart E/I Rules for MedRadio Services, Federal Communications Commission Std.
  • [10] ITU-R Recommendation RS.1346: Sharing between the meteorological aids service and medical implant communication systems (MICS) operating in the mobile service in the frequency band 401–406 MHz, 1998.,
  • [11] Y.-H. Liu, C.-J. Tung, and T.-H. Lin, “A low-power asymmetrical mics wireless interface and transceiver design for medical imaging,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov 2006, pp.162–165.
  • [12] K. Zhu, M. Haider, S. Yuan, and S. Islam, “A sub-1 ua low-power fsk modulator for biomedical sensor circuits,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July 2010, pp. 265–268.
  • [13] S. Kulac¸ and H. Arslan, "Reliable listen-before-talk mechanism for medical implant communication systems," 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, 2016,pp.1-4.doi:10.1109/HealthCom.2016.7749531
  • [14][Online].Available: http://www.top500.org/lists/2016/11/
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Original Articles
Authors

Selman Kulaç

Publication Date June 30, 2018
Submission Date January 29, 2017
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Kulaç, S. (2018). MEDİKAL İMPLANT HABERLEŞME SİSTEMLERİ İÇİN BANDGENİŞLİĞİ VERİMLİ ÖRTÜŞMELİ FSK KODLAMALI GÜVENLİ KOMUT İLETİMİ. Gazi University Journal of Science Part C: Design and Technology, 6(2), 250-258. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.288622

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526