Research Article
BibTex RIS Cite

Yeni Nesil Modüler Taşıma Aracının 3-Serbestlik Derecesinde Manyetik Yastıklama Hava Aralığı Kontrolü

Year 2018, Volume: 6 Issue: 3, 524 - 535, 30.09.2018
https://doi.org/10.29109/gujsc.366184

Abstract

Bu
çalışmada, 3 adet doğrusal motorla karma elektromıknatısların bir araya
getirilmesiyle elde edilen manyetik yastıklama temeline dayalı bir taşıma
aracı, yeni nesil modüler bir taşıma sistemi meydana getirmek için
önerilmiştir. Sonlu elemanlar metodu ile manyetik yastıklama kuvvetlerinin 3
boyutlu analizi yapılmıştır.  Önerilen
sistem doğrusal olmayan dinamiklere sahip olup kontrol açısından kararsız
sistem özelliği göstermektedir. Sistemi kararlı hale getirecek denetleyici
tasarımlarını gerçekleştirmek için 3-eksende hareket dinamiğine karşılık gelen
doğrusal sistem modelleri geliştirilmiştir. Her bir eksen takımı için
geliştirilen doğrusal modeller kullanılarak kararlılığı sağlayan ve aynı
zamanda verilen referansı takip eden denetleyiciler I-PD denetleyici topolojisi
dikkate alınarak tasarlanmıştır. Denetleyici tasarımlarında, muadillerine göre
daha kolay tasarım ve uyarlama imkânı sağlayan kanonik polinom yaklaşımı ile
katsayı diyagramı metodu kullanımı önerilmiştir. 3-serbestlik derecesinde
manyetik yastıklama kontrolü deneysel olarak gerçekleştirilmiş, önerilen
kontrol yaklaşımının etkinliği ve başarısı deneysel olarak gösterilmiştir.     

References

  • [1]SINHA, P. K., Electromagnetic Suspension, Dynamics and Control, Peter Peregrinus Ltd., London, U. K., 1987
  • [2]HAN, H. S., KIM D. S., Magnetic Levitation: Maglev Technology and Applications, Springer, 2016
  • [3]MAKINO, Y., ERKAN, K., KOSEKI, T.,"Six Degrees of Freedom Control through Three Hybrid Electromagnets and Three Linear Motors for Two Dimensional Conveyance System", SEAD 2004, The 16th Symposium on Electromagnetic and Dynamics (SEAD), 87-90 Kita Kyushu, Japan, June 2004
  • [4]ERKAN, K., KOSEKI, T., “Fuzzy model based nonlinear control of an active oscillation suppression system comprised of mechanically flexible elements and triple configuration of u-shaped electromagnets”, 9th IEEE International Workshop on Advanced Motion Control, 698-703, Istanbul, Turkey, 2006
  • [5]ERKAN, K., YALÇIN, B. C., GARIP, M., “Three-axis gap clearance I-PD controller design based on coefficient diagram method for 4-pole hybrid electromagnet”, Automatika: Journal for Control, Measurement, Electronics, Computing and Communications, 58:2, 147-167, 2016
  • [6]BOJAN-DRAGOS, C. A., PREITL, S., PRECUP, R.-E., et al. “State feedback and proportional-integral-derivative control of a magnetic levitation system”, IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), 111-116, 2016
  • [7]ZHANG, J., TAO, T., MEI, X., JIANG, G., ZHANG, D., “Non-linear robust control of a voltage-controlled magnetic levitation system with a feedback linearization approach,” Journal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers, Part I, 225, 85–98, 2011.
  • [8]SUNG-KYUNG, H., LANGARI, R., “Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances”, IEEE Trans Contr Syst Technol., 8-2, 366–371, 2000.
  • [9]SU K. H., LI, C. Y., “Supervisory fuzzy model control for magnetic levitation system”, IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), Mexico City, Mexico, 2016
  • [10]CHO, D., KATO, Y., SPILMAN, D., “Sliding mode and classical controllers in magnetic levitation systems”, IEEE Control Syst., ;13-1, 42–48, 1993.
  • [11]CHUNFANG, L., ZHANG J., “Design of second-order sliding mode controller for electromagnetic levitation grip used in CNC”, 24th Chinese Control and Decision Conference (CCDC), 3282-3285, Taiyuan, China, 2012
  • [12]CHIANG, H. K., TSENG, W-T., FANG C-C., et al.”Integral backstepping sliding mode control of a magnetic ball suspension system”, IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 44-49, Kitakyushu, Japan, 2013
  • [13]PHUAH, J., LU, J., YASSER, M., YAHAGI, T., “Neuro-sliding mode control for magnetic levitation systems,” IEEE International Symposium on Circuits and Systems, 5, 5130-5133, 2005.
  • [14]WANG, B., LIU, G.-P., REES, D., “Networked predictive control of magnetic levitation system,” IEEE International Conference on Systems, Man and Cybernetics, 4100–4105, 2009
  • [15]ASTRÖM, K.J., HAGGLUND, T., PID Controllers: Theory, Design and Tuning. 2nd Edition. Research Triangle Park, NC: Instrument Sociaty of America, 1995
  • [16]VERMA, S. K., YADAV, S., NAGAR, S. K., “Optimal fractional order PID controller for magnetic levitation system”, 39th National Systems Conference (NSC), Noida, India, 2015
  • [17]SINGH B., KUMAR, V., “A real time application of model reference adaptive PID controller for magnetic levitation system”, IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 2015
  • [18]MANABE, S., "Coefficient Diagram Method", 14th IFAC Symp. on Automatic Control in Aerospace, Seoul, 211-222, 1998
  • [19]HAMAMCI, S. E., “A robust polynomial-based control for stable processes with time delay”, Electrical Engineering, 87, 163–172, 2005
Year 2018, Volume: 6 Issue: 3, 524 - 535, 30.09.2018
https://doi.org/10.29109/gujsc.366184

Abstract

References

  • [1]SINHA, P. K., Electromagnetic Suspension, Dynamics and Control, Peter Peregrinus Ltd., London, U. K., 1987
  • [2]HAN, H. S., KIM D. S., Magnetic Levitation: Maglev Technology and Applications, Springer, 2016
  • [3]MAKINO, Y., ERKAN, K., KOSEKI, T.,"Six Degrees of Freedom Control through Three Hybrid Electromagnets and Three Linear Motors for Two Dimensional Conveyance System", SEAD 2004, The 16th Symposium on Electromagnetic and Dynamics (SEAD), 87-90 Kita Kyushu, Japan, June 2004
  • [4]ERKAN, K., KOSEKI, T., “Fuzzy model based nonlinear control of an active oscillation suppression system comprised of mechanically flexible elements and triple configuration of u-shaped electromagnets”, 9th IEEE International Workshop on Advanced Motion Control, 698-703, Istanbul, Turkey, 2006
  • [5]ERKAN, K., YALÇIN, B. C., GARIP, M., “Three-axis gap clearance I-PD controller design based on coefficient diagram method for 4-pole hybrid electromagnet”, Automatika: Journal for Control, Measurement, Electronics, Computing and Communications, 58:2, 147-167, 2016
  • [6]BOJAN-DRAGOS, C. A., PREITL, S., PRECUP, R.-E., et al. “State feedback and proportional-integral-derivative control of a magnetic levitation system”, IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), 111-116, 2016
  • [7]ZHANG, J., TAO, T., MEI, X., JIANG, G., ZHANG, D., “Non-linear robust control of a voltage-controlled magnetic levitation system with a feedback linearization approach,” Journal of Systems and Control Engineering, Proceedings of the Institution of Mechanical Engineers, Part I, 225, 85–98, 2011.
  • [8]SUNG-KYUNG, H., LANGARI, R., “Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances”, IEEE Trans Contr Syst Technol., 8-2, 366–371, 2000.
  • [9]SU K. H., LI, C. Y., “Supervisory fuzzy model control for magnetic levitation system”, IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), Mexico City, Mexico, 2016
  • [10]CHO, D., KATO, Y., SPILMAN, D., “Sliding mode and classical controllers in magnetic levitation systems”, IEEE Control Syst., ;13-1, 42–48, 1993.
  • [11]CHUNFANG, L., ZHANG J., “Design of second-order sliding mode controller for electromagnetic levitation grip used in CNC”, 24th Chinese Control and Decision Conference (CCDC), 3282-3285, Taiyuan, China, 2012
  • [12]CHIANG, H. K., TSENG, W-T., FANG C-C., et al.”Integral backstepping sliding mode control of a magnetic ball suspension system”, IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 44-49, Kitakyushu, Japan, 2013
  • [13]PHUAH, J., LU, J., YASSER, M., YAHAGI, T., “Neuro-sliding mode control for magnetic levitation systems,” IEEE International Symposium on Circuits and Systems, 5, 5130-5133, 2005.
  • [14]WANG, B., LIU, G.-P., REES, D., “Networked predictive control of magnetic levitation system,” IEEE International Conference on Systems, Man and Cybernetics, 4100–4105, 2009
  • [15]ASTRÖM, K.J., HAGGLUND, T., PID Controllers: Theory, Design and Tuning. 2nd Edition. Research Triangle Park, NC: Instrument Sociaty of America, 1995
  • [16]VERMA, S. K., YADAV, S., NAGAR, S. K., “Optimal fractional order PID controller for magnetic levitation system”, 39th National Systems Conference (NSC), Noida, India, 2015
  • [17]SINGH B., KUMAR, V., “A real time application of model reference adaptive PID controller for magnetic levitation system”, IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 2015
  • [18]MANABE, S., "Coefficient Diagram Method", 14th IFAC Symp. on Automatic Control in Aerospace, Seoul, 211-222, 1998
  • [19]HAMAMCI, S. E., “A robust polynomial-based control for stable processes with time delay”, Electrical Engineering, 87, 163–172, 2005
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Kadir Erkan 0000-0001-9293-7279

Publication Date September 30, 2018
Submission Date December 14, 2017
Published in Issue Year 2018 Volume: 6 Issue: 3

Cite

APA Erkan, K. (2018). Yeni Nesil Modüler Taşıma Aracının 3-Serbestlik Derecesinde Manyetik Yastıklama Hava Aralığı Kontrolü. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(3), 524-535. https://doi.org/10.29109/gujsc.366184

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526