Research Article
BibTex RIS Cite

Östemperlenmiş Küresel Grafitli Dökme Demirlerde İndüksiyonla Yüzey Sertleştirmenin Yorulma Sınırı Üzerine Etkisi

Year 2018, Volume: 6 Issue: 3, 668 - 679, 30.09.2018
https://doi.org/10.29109/gujsc.401600

Abstract

Bu çalışmada, östemperlenmiş küresel grafitli dökme
demirlerde indüksiyonla yüzey sertleştirmenin yorulma sınırı üzerine etkisi araştırılmıştır.
Bu amaçla, GGG70 sınıfı küresel grafitli dökme demir numuneler; 900°C’de 90 dk
östenitlenmiş ve ardından 375°C sıcaklıktaki tuz banyosunda 120 dk
östemperlenmiştir. Daha sonra dökülmüş ve östemperlenmiş koşullardaki yorulma
numunelerine yüksek frekanslı indüksiyonla yüzey sertleştirme uygulanmıştır. Dökülmüş
halde, östemperlenmiş, dökülmüş halde + indüksiyonla sertleştirilmiş ve
östemperlenmiş+indüksiyon ile sertleştirilmiş numunelerin yorulma sınırları,
dönel eğmeli yorulma testi cihazı belirlenmiştir. Deneysel sonuçlar, test
edilen numuneler arasında en iyi yorulma sınırı sonuçlarını östemperlenmiş+yüzeyi
indüksiyonla sertleştirilmiş numunelerin sergilediğini göstermiştir. 

References

  • [1] Nofal, A., Jekova, L. Novel processing techniques and applications of austempered ductile iron. J.Univ. of Chem. Tech. and Metall., 44(213-228), (2009).
  • [2] Bartosiewicz, L., Krause, A., Alberts, F., Singh, I., Putatunda, S.K. Influence of microstructure on high-cycle fatigue behavior of austempered ductile cast iron. Mater. Charac., 30(221-234), (1993).
  • [3] Bartosiewicz, L., Krause, A., Kovacs, B., Putatunda, S.K. Fatigue Crack Growth, Behaviour of Austempered Ductile Cast Iron. AFS Trans., 92(135-142), (1992).
  • [4] Dodd, J. High strength, high ductility, ductile irons. Modern Casting, 68(60-66), (1978).
  • [5] Gundlach, R.B., Janowak, J.F. Austempered ductile iron combines strength with toughness and ductility. Metal Progress, 128(19-26), (1985).
  • [6] Harding, R. Why the properties of austempered ductile irons should interest engineers. British Foundryman, 79(489-496), (1986).
  • [7] Johansson, M. Austenitic-bainitic ductile iron. AFS Trans., 85((1977).
  • [8] Putatunda, S.K. Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Materi. Sci. and Eng. A, 315(70-80), (2001).
  • [9] Schmidt, I., Schuchert, A. Unlubricated sliding wear of austempered ductile iron. Z. Metallkd., 78(871-875), (1987).
  • [10] Shanmugam, P., Rao, P.P., Udupa, K.R., Venkataraman, N. Effect of microstructure on the fatigue strength of an austempered ductile iron. J. Mater. Sci., 29(4933-4940), (1994).
  • [11] Keough, J., Hayrynen, K., Pioszak, G. Designing with austempered ductile iron (ADI). AFS Trans., 118(1-15), (2010).
  • [12] Kovacs, B. Development of austempered ductile iron (ADI) for automobile crankshafts. Journal of Heat Treating, 5(55-60), (1987).
  • [13] Druschitz, A.P., Thelen, S. Induction hardened ductile iron camshafts. SAE 2002 World Congress & Exhibition, (2002).
  • [14] Kim, J.-D., Ji, J.-K. Effect of super-rapid induction quenching on fatigue fracture behavior of spherical graphite cast iron FCD500. J. Mater. Proc. Tech., 176(19-23), (2006).
  • [15] Ma, H. (2012). The Quantitative Assessment of Retained Austenite in Induction Hardened Ductile Iron, University of Winsdor.
  • [16] Misaka, Y., Kawasaki, K., Komotori, J., Shimizu, M. Fatigue strength of ferritic ductile cast iron hardened by super rapid induction heating and quenching. Mater. Trans., 45(2930-2935), (2004).
  • [17] Nateq, M.H., Kahrobaee, S., Kashefi Torbati, M. Nondestructive characterization of induction hardened cast iron parts. 2nd International Conference on Materials Heat Treatment, (2011).
  • [18] Rudnev, V.I. Induction Hardening Cast Iron. Heat Treating Progress, 3(27-32), (2003).
  • [19] Smoljan, B., Cajner, F., Landek, D. An analysis of induction hardening of ferritic ductile iron. J. Mater. Eng. Perform., 11(278-282), (2002).
  • [20] Mahmoud, A., Mohamed, M. Laser Surface Hardening of Ductile Cast Iron. Machines, Technologies, Materials, 12(3-6), (2013).
  • [21] Roy, A., Manna, I. Mathematical modeling of localized melting around graphite nodules during laser surface hardening of austempered ductile iron. Optics and Lasers in Eng., 34(369-383), (2000).
  • [22] Roy, A., Manna, I. Laser surface engineering to improve wear resistance of austempered ductile iron. Materi. Sci. and Eng. A, 297(85-93), (2001).
  • [23] Sohi, M.H., Karshenas, G., Boutorabi, S. Electron beam surface melting of as cast and austempered ductile irons. J. Mater. Proc. Tech., 153(199-202), (2004).
  • [24] Soriano, C., Leunda, J., Lambarri, J., Navas, V.G., Sanz, C. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Applied Surf. Sci., 257(7101-7106), (2011).
  • [25] Suh, D., Lee, S., Koo, Y., Kwon, S.-J. Surface hardening of a ductile-cast iron roll using high-energy electron beams. Metall. Mater. Trans. A, 28(1499-1508), (1997).
  • [26] Wade, N., Ueda, Y. Continuous Heating Transformation of Spheroidal Graphite Cast Iron. Trans. Iron Steel Inst. Jpn., 20(857-861), (1980).
  • [27] Bahmani, M., Elliott, R., Varahram, N. The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron. Journal of Mater. Sci., 32(5383-5388), (1997).
  • [28] Greno, G., Pardo, E., Boeri, R. Fatigue of austempered ductile iron. AFS Trans., 106(31-37), (1998).
  • [29] Jahangiri, M., Ahmadabadi, M.N., Farhangi, H. Enhancement of fatigue properties of ductile irons by successive austempering heat treatment. J. Mater. Eng. Perform., 20(1642-1647), (2011).
  • [30] Luo, J., Bowen, P., Harding, R. Evaluation of the fatigue behavior of ductile irons with various matrix microstructures. Metall. Mater. Trans. A, 33(3719-3730), (2002).
  • [31] Salman, S., Fındık, F., Topuz, P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater. & Des., 28(2210-2214), (2007).
  • [32] Tayanc, M., Aztekin, K., Bayram, A. The effect of matrix structure on the fatigue behavior of austempered ductile iron. Mater. & Des., 28(797-803), (2007).
  • [33] Toktaş, G., Toktaş, A., Tayanç, M. Influence of matrix structure on the fatigue properties of an alloyed ductile iron. Mater. & Des., 29(1600-1608), (2008).
  • [34] Yamanaka, M., Tamura, R., Inoue, K., Narita, Y. Bending fatigue strength of austempered ductile iron spur gears. Journal of Adv. Mech. Des. Sys. and Man., 3(203-211), (2009).
  • [35] Ovali, I., Kilicli, V., Erdogan, M. Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures. ISIJ Int., 53(375-381), (2013).
  • [36] Ovali, I. (2006). Kritik Tavlama Sıcaklıklarından Östemperlenmiş Çift Matrisli Alaşımsız Küresel Grafitli Dökme Demirlerin Yorulma Özellikleri, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 31-32.
  • [37] Wohlfahrt, M., Oberwinkler, C., Tunzini, S., Rauscher, A., de la Prida Caballero, R., Eichlseder, W. The role of sampling position on fatigue of austempered ductile iron. Procedia Eng., 2(1337-1341), (2010).
  • [38] Lin, C.-K., Lai, P.-K., Shih, T.-S. Influence of microstructure on the fatigue properties of austempered ductile irons—I. High-cycle fatigue. Int. J. Fatigue, 18(297-307), (1996).
Year 2018, Volume: 6 Issue: 3, 668 - 679, 30.09.2018
https://doi.org/10.29109/gujsc.401600

Abstract

References

  • [1] Nofal, A., Jekova, L. Novel processing techniques and applications of austempered ductile iron. J.Univ. of Chem. Tech. and Metall., 44(213-228), (2009).
  • [2] Bartosiewicz, L., Krause, A., Alberts, F., Singh, I., Putatunda, S.K. Influence of microstructure on high-cycle fatigue behavior of austempered ductile cast iron. Mater. Charac., 30(221-234), (1993).
  • [3] Bartosiewicz, L., Krause, A., Kovacs, B., Putatunda, S.K. Fatigue Crack Growth, Behaviour of Austempered Ductile Cast Iron. AFS Trans., 92(135-142), (1992).
  • [4] Dodd, J. High strength, high ductility, ductile irons. Modern Casting, 68(60-66), (1978).
  • [5] Gundlach, R.B., Janowak, J.F. Austempered ductile iron combines strength with toughness and ductility. Metal Progress, 128(19-26), (1985).
  • [6] Harding, R. Why the properties of austempered ductile irons should interest engineers. British Foundryman, 79(489-496), (1986).
  • [7] Johansson, M. Austenitic-bainitic ductile iron. AFS Trans., 85((1977).
  • [8] Putatunda, S.K. Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Materi. Sci. and Eng. A, 315(70-80), (2001).
  • [9] Schmidt, I., Schuchert, A. Unlubricated sliding wear of austempered ductile iron. Z. Metallkd., 78(871-875), (1987).
  • [10] Shanmugam, P., Rao, P.P., Udupa, K.R., Venkataraman, N. Effect of microstructure on the fatigue strength of an austempered ductile iron. J. Mater. Sci., 29(4933-4940), (1994).
  • [11] Keough, J., Hayrynen, K., Pioszak, G. Designing with austempered ductile iron (ADI). AFS Trans., 118(1-15), (2010).
  • [12] Kovacs, B. Development of austempered ductile iron (ADI) for automobile crankshafts. Journal of Heat Treating, 5(55-60), (1987).
  • [13] Druschitz, A.P., Thelen, S. Induction hardened ductile iron camshafts. SAE 2002 World Congress & Exhibition, (2002).
  • [14] Kim, J.-D., Ji, J.-K. Effect of super-rapid induction quenching on fatigue fracture behavior of spherical graphite cast iron FCD500. J. Mater. Proc. Tech., 176(19-23), (2006).
  • [15] Ma, H. (2012). The Quantitative Assessment of Retained Austenite in Induction Hardened Ductile Iron, University of Winsdor.
  • [16] Misaka, Y., Kawasaki, K., Komotori, J., Shimizu, M. Fatigue strength of ferritic ductile cast iron hardened by super rapid induction heating and quenching. Mater. Trans., 45(2930-2935), (2004).
  • [17] Nateq, M.H., Kahrobaee, S., Kashefi Torbati, M. Nondestructive characterization of induction hardened cast iron parts. 2nd International Conference on Materials Heat Treatment, (2011).
  • [18] Rudnev, V.I. Induction Hardening Cast Iron. Heat Treating Progress, 3(27-32), (2003).
  • [19] Smoljan, B., Cajner, F., Landek, D. An analysis of induction hardening of ferritic ductile iron. J. Mater. Eng. Perform., 11(278-282), (2002).
  • [20] Mahmoud, A., Mohamed, M. Laser Surface Hardening of Ductile Cast Iron. Machines, Technologies, Materials, 12(3-6), (2013).
  • [21] Roy, A., Manna, I. Mathematical modeling of localized melting around graphite nodules during laser surface hardening of austempered ductile iron. Optics and Lasers in Eng., 34(369-383), (2000).
  • [22] Roy, A., Manna, I. Laser surface engineering to improve wear resistance of austempered ductile iron. Materi. Sci. and Eng. A, 297(85-93), (2001).
  • [23] Sohi, M.H., Karshenas, G., Boutorabi, S. Electron beam surface melting of as cast and austempered ductile irons. J. Mater. Proc. Tech., 153(199-202), (2004).
  • [24] Soriano, C., Leunda, J., Lambarri, J., Navas, V.G., Sanz, C. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Applied Surf. Sci., 257(7101-7106), (2011).
  • [25] Suh, D., Lee, S., Koo, Y., Kwon, S.-J. Surface hardening of a ductile-cast iron roll using high-energy electron beams. Metall. Mater. Trans. A, 28(1499-1508), (1997).
  • [26] Wade, N., Ueda, Y. Continuous Heating Transformation of Spheroidal Graphite Cast Iron. Trans. Iron Steel Inst. Jpn., 20(857-861), (1980).
  • [27] Bahmani, M., Elliott, R., Varahram, N. The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron. Journal of Mater. Sci., 32(5383-5388), (1997).
  • [28] Greno, G., Pardo, E., Boeri, R. Fatigue of austempered ductile iron. AFS Trans., 106(31-37), (1998).
  • [29] Jahangiri, M., Ahmadabadi, M.N., Farhangi, H. Enhancement of fatigue properties of ductile irons by successive austempering heat treatment. J. Mater. Eng. Perform., 20(1642-1647), (2011).
  • [30] Luo, J., Bowen, P., Harding, R. Evaluation of the fatigue behavior of ductile irons with various matrix microstructures. Metall. Mater. Trans. A, 33(3719-3730), (2002).
  • [31] Salman, S., Fındık, F., Topuz, P. Effects of various austempering temperatures on fatigue properties in ductile iron. Mater. & Des., 28(2210-2214), (2007).
  • [32] Tayanc, M., Aztekin, K., Bayram, A. The effect of matrix structure on the fatigue behavior of austempered ductile iron. Mater. & Des., 28(797-803), (2007).
  • [33] Toktaş, G., Toktaş, A., Tayanç, M. Influence of matrix structure on the fatigue properties of an alloyed ductile iron. Mater. & Des., 29(1600-1608), (2008).
  • [34] Yamanaka, M., Tamura, R., Inoue, K., Narita, Y. Bending fatigue strength of austempered ductile iron spur gears. Journal of Adv. Mech. Des. Sys. and Man., 3(203-211), (2009).
  • [35] Ovali, I., Kilicli, V., Erdogan, M. Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures. ISIJ Int., 53(375-381), (2013).
  • [36] Ovali, I. (2006). Kritik Tavlama Sıcaklıklarından Östemperlenmiş Çift Matrisli Alaşımsız Küresel Grafitli Dökme Demirlerin Yorulma Özellikleri, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 31-32.
  • [37] Wohlfahrt, M., Oberwinkler, C., Tunzini, S., Rauscher, A., de la Prida Caballero, R., Eichlseder, W. The role of sampling position on fatigue of austempered ductile iron. Procedia Eng., 2(1337-1341), (2010).
  • [38] Lin, C.-K., Lai, P.-K., Shih, T.-S. Influence of microstructure on the fatigue properties of austempered ductile irons—I. High-cycle fatigue. Int. J. Fatigue, 18(297-307), (1996).
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Erkun Oktay This is me

Volkan Kılıçlı 0000-0002-0456-5987

Mehmet Erdoğan

Publication Date September 30, 2018
Submission Date March 5, 2018
Published in Issue Year 2018 Volume: 6 Issue: 3

Cite

APA Oktay, E., Kılıçlı, V., & Erdoğan, M. (2018). Östemperlenmiş Küresel Grafitli Dökme Demirlerde İndüksiyonla Yüzey Sertleştirmenin Yorulma Sınırı Üzerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 6(3), 668-679. https://doi.org/10.29109/gujsc.401600

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526