Research Article
BibTex RIS Cite

PEG-400 Destekli Alumina Sentezi, Karakterizasyonu ve Morfolojik Özelliklerin İncelenmesi

Year 2018, Volume: 6 Issue: 4, 919 - 927, 30.12.2018
https://doi.org/10.29109/gujsc.421674

Abstract

Bu çalışmada
hidrotermal sentez yöntemi kullanılarak PEG-400 destekli α-alumina sentezi başarılı
şekilde gerçekleştirildi. Yapı düzenleyici ajan olarak kullanılan PEG-400’un
parçacık boyutuna etkileri araştırıldı. Sentezlenen tozların yapısal
karakterizasyonu XRD, Raman ve FTIR yöntemleri kullanılarak gerçekleştirildi.
Termal özelliklerin araştırılmasında TGA yöntemi kullanıldı. Morfolojik özellikler
ise SEM yöntemi kullanılarak araştırıldı. Çalışmanın sonuçları yapı düzenleyici
ajan kullanılmadan gerçekleştirilen deneyle karşılaştırıldığında daha küçük
boyutlarda saf α-Al2O3 elde edildiğini göstermektedir.

References

  • [1] J. Chandradass, J. H. Yoon, D. S. Bae, Synthesis and characterization of zirconia doped alumina nanopowder by citrate–nitrate process. Materials Science and Engineering A, 473 (2008) 360–364.
  • [2] Z. X. Sun, T. T. Zheng, Q. B. Bo, M. Du, W. Forsling, Effects of calcination temperature on the pore size and wall crystalline structure of mesoporous alümina. Journal of Colloid and Interface Science 319 (2008) 247–251.
  • [3] J. Z. Yang, M. H. Fang, Z. H. Huang, X. Z. Hu, Y. G. Liu, H. R. Sun, J. T. Huang, X. C. Li, Solid particle impact erosion of alumina-based refractories at elevated temperatures. Journal of the European Ceramic Society, 32:2 (2012) 283-289.
  • [4] A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, Hafnia-yttria-alumina-silica based optical fibers with diminished mid-IR (>2 µm) loss. Optical Materials Express, 7:7 (2017) 2511-2518.
  • [5] I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structure andtransition sequences, J. Am. Ceram. Soc., 81 (1998) 1995-2012.
  • [6] M. T. Ravanchi, M. R. Fard, S. Fadaeerayeni, F. Yaripour, Effect of Calcination Conditions on Crystalline Structure and Pore Size Distribution for a Mesoporous Alumina. Journal Chemical Engineering Communications, 202:4 (2015) 493-499.
  • [7] R. K. Dwivedi, G. Gowda. Thermal stability of aluminium oxides prepared from gel. J. Mater. Sci. Lett., 4 (1985) 331-334.
  • [8] Saraswati, V., Rao, G. V. N., and Rao, G. V. R. (1987). Structural evolution in alümina gel, J. Mater. Sci., 22, 2529-2534.
  • [9] T. Assih, A. Ayral, M. Abenoza, J. Phalippou,. Raman study of alümina gels. J. Mater. Sci., 23 (1988) 3326-3331.
  • [10] R. Ozao, M. Ochiai, H. Yoshida, Y. Ichimura, T. Inada,. Preparation of γ-alumina membranes from sulphuric electrolyte anodic alumina and its transition to α-alumina. J. Therm. Anal. Calorim, 64 (2001) 923-932.
  • [11] K. Lu, Theoretical analysis of colloidal interaction energy in nanoparticle suspensions. Ceramics International 34: 6 (2008) 1551-1556.
  • [12] J.S. Forrester, H.J. Goodshaw, E.H. Kisi, G.J. Suaning, J.S. Zobec, Effect of Mechanical Milling on the Sintering Behaviour of Alumina. Aust. Ceram. Soc. 44:1 (2008) 47-52.
  • [13] F. Mirjalili, M. Hasmaliza, A. L. Chuah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceramics International 36 (2010) 1253–1257.
  • [14] P. K. Panda, V. A. Jaleel, S. Usha Devi, Hydrothermal synthesis of boehmite and α-alumina from Bayer’s alumina trihydrate. J Mater Sci 41 (2006) 8386–8389.
  • [15] R. Lafficher, M. Dignea, F. Salvatoria, M. Bouallega, D. Colsonb, F. Puel, Development of new alumina precipitation routes for catalysis applications. Journal of Crystal Growth, 468 (2017) 526-530.
  • [16] T. E. Bell, J. M. Gonz´alez-Carballo, R. P. Tooze, L. Torrente-Murciano, g-Al2O3 nanorods with tuneable dimensions a mechanistic understanding of their hydrothermal synthesis. RSC Adv., 7 (2017) 22369–22377.
  • [17] S. Bhaduri, E. Zhou, S.B. Bhaduri, Auto ignition processing of nanocrystalline a-Al2O3. Nanostruct. Mater. 7 :5 (1996) 487–496.
  • [18] J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, Low temperature synthesis of ultrafine a-Al2O3 powder by a simple aqueous sol–gel process. Ceramics International 32 (2006) 587–591.
  • [19] S. Vural, Nanometrik Boyuttaki Metal Oksit Sollerinin Olusumlari, Yapisal Kontrolü ve Fizikokimyasal Özelliklerinin Arastirilmasi, Inonu Universitesi, Malatya, 2007.
  • [20] A. H. Lu, E. L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 46 (2007) 1222 – 1244.
  • [21] G. Li, Y. Sun, X. Li, Y. Liu, Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020). RSC Adv., 6 (2016) 11855-11862.
  • [22] J. Gangwar, B. K. Gupta, S. K. Tripathi, A. K. Srivastav, Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale,m7 (2015) 13313-13344.
  • [23] G. Pezzotti, W. Zhu, Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alümina. Phys. Chem. Chem. Phys., 17 (2015) 2608-2627.
  • [24] L. Sicard, P.L. Llewellyn, J. Patarin, F. Kolenda, Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Micro. Meso. Mater. 44-45 (2001) 195– 201.
  • [25] S. Ghanizadeh, X. Bao, B. Vaidhyanathan, J. Binner, Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparativestudy. Ceramics International, 40 (2014) 1311–1319.
Year 2018, Volume: 6 Issue: 4, 919 - 927, 30.12.2018
https://doi.org/10.29109/gujsc.421674

Abstract

References

  • [1] J. Chandradass, J. H. Yoon, D. S. Bae, Synthesis and characterization of zirconia doped alumina nanopowder by citrate–nitrate process. Materials Science and Engineering A, 473 (2008) 360–364.
  • [2] Z. X. Sun, T. T. Zheng, Q. B. Bo, M. Du, W. Forsling, Effects of calcination temperature on the pore size and wall crystalline structure of mesoporous alümina. Journal of Colloid and Interface Science 319 (2008) 247–251.
  • [3] J. Z. Yang, M. H. Fang, Z. H. Huang, X. Z. Hu, Y. G. Liu, H. R. Sun, J. T. Huang, X. C. Li, Solid particle impact erosion of alumina-based refractories at elevated temperatures. Journal of the European Ceramic Society, 32:2 (2012) 283-289.
  • [4] A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, S. Das, D. Dutta, A. Dhar, A. V. Khakhalin, E. M. Sholokhov, N. N. Il’ichev, S. I. Didenko, and M. C. Paul, Hafnia-yttria-alumina-silica based optical fibers with diminished mid-IR (>2 µm) loss. Optical Materials Express, 7:7 (2017) 2511-2518.
  • [5] I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structure andtransition sequences, J. Am. Ceram. Soc., 81 (1998) 1995-2012.
  • [6] M. T. Ravanchi, M. R. Fard, S. Fadaeerayeni, F. Yaripour, Effect of Calcination Conditions on Crystalline Structure and Pore Size Distribution for a Mesoporous Alumina. Journal Chemical Engineering Communications, 202:4 (2015) 493-499.
  • [7] R. K. Dwivedi, G. Gowda. Thermal stability of aluminium oxides prepared from gel. J. Mater. Sci. Lett., 4 (1985) 331-334.
  • [8] Saraswati, V., Rao, G. V. N., and Rao, G. V. R. (1987). Structural evolution in alümina gel, J. Mater. Sci., 22, 2529-2534.
  • [9] T. Assih, A. Ayral, M. Abenoza, J. Phalippou,. Raman study of alümina gels. J. Mater. Sci., 23 (1988) 3326-3331.
  • [10] R. Ozao, M. Ochiai, H. Yoshida, Y. Ichimura, T. Inada,. Preparation of γ-alumina membranes from sulphuric electrolyte anodic alumina and its transition to α-alumina. J. Therm. Anal. Calorim, 64 (2001) 923-932.
  • [11] K. Lu, Theoretical analysis of colloidal interaction energy in nanoparticle suspensions. Ceramics International 34: 6 (2008) 1551-1556.
  • [12] J.S. Forrester, H.J. Goodshaw, E.H. Kisi, G.J. Suaning, J.S. Zobec, Effect of Mechanical Milling on the Sintering Behaviour of Alumina. Aust. Ceram. Soc. 44:1 (2008) 47-52.
  • [13] F. Mirjalili, M. Hasmaliza, A. L. Chuah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceramics International 36 (2010) 1253–1257.
  • [14] P. K. Panda, V. A. Jaleel, S. Usha Devi, Hydrothermal synthesis of boehmite and α-alumina from Bayer’s alumina trihydrate. J Mater Sci 41 (2006) 8386–8389.
  • [15] R. Lafficher, M. Dignea, F. Salvatoria, M. Bouallega, D. Colsonb, F. Puel, Development of new alumina precipitation routes for catalysis applications. Journal of Crystal Growth, 468 (2017) 526-530.
  • [16] T. E. Bell, J. M. Gonz´alez-Carballo, R. P. Tooze, L. Torrente-Murciano, g-Al2O3 nanorods with tuneable dimensions a mechanistic understanding of their hydrothermal synthesis. RSC Adv., 7 (2017) 22369–22377.
  • [17] S. Bhaduri, E. Zhou, S.B. Bhaduri, Auto ignition processing of nanocrystalline a-Al2O3. Nanostruct. Mater. 7 :5 (1996) 487–496.
  • [18] J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, Low temperature synthesis of ultrafine a-Al2O3 powder by a simple aqueous sol–gel process. Ceramics International 32 (2006) 587–591.
  • [19] S. Vural, Nanometrik Boyuttaki Metal Oksit Sollerinin Olusumlari, Yapisal Kontrolü ve Fizikokimyasal Özelliklerinin Arastirilmasi, Inonu Universitesi, Malatya, 2007.
  • [20] A. H. Lu, E. L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed., 46 (2007) 1222 – 1244.
  • [21] G. Li, Y. Sun, X. Li, Y. Liu, Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020). RSC Adv., 6 (2016) 11855-11862.
  • [22] J. Gangwar, B. K. Gupta, S. K. Tripathi, A. K. Srivastav, Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale,m7 (2015) 13313-13344.
  • [23] G. Pezzotti, W. Zhu, Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alümina. Phys. Chem. Chem. Phys., 17 (2015) 2608-2627.
  • [24] L. Sicard, P.L. Llewellyn, J. Patarin, F. Kolenda, Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Micro. Meso. Mater. 44-45 (2001) 195– 201.
  • [25] S. Ghanizadeh, X. Bao, B. Vaidhyanathan, J. Binner, Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparativestudy. Ceramics International, 40 (2014) 1311–1319.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Original Articles
Authors

Sema Vural 0000-0001-6168-1960

Ozlem Sarı This is me 0000-0002-1709-7975

Publication Date December 30, 2018
Submission Date May 7, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Vural, S., & Sarı, O. (2018). PEG-400 Destekli Alumina Sentezi, Karakterizasyonu ve Morfolojik Özelliklerin İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 6(4), 919-927. https://doi.org/10.29109/gujsc.421674

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526