Research Article
BibTex RIS Cite

Toz Metalurjisi Metoduyla Al-SiC Kompozit Malzeme Üretimi ve Aşınma Özelliklerinin Araştırılması

Year 2019, Volume: 7 Issue: 3, 741 - 754, 27.09.2019
https://doi.org/10.29109/gujsc.587637

Abstract

Özet



 Alüminyum matrisli seramik parçacık takviyeli
kompozitler matris malzemeye göre daha yüksek aşınma ve ısıl genleşme direnci
gibi özelliklerinden dolayı özellikle uzay ve havacılık alanında tercih edilen
malzemelerdir. Bu çalışmada katı hal yöntemi olan toz metalürjisi üretim metodu
uygulanarak SiC takviyeli kompozit malzeme üretilmiştir. Başlangıçta matris
yapıyı oluşturan atomize alüminyum tozu ve SiC tozu turbula cihazında mekanik
olarak öğütme ve karıştırma işlemine tabi tutularak kompozit toz üretimi
gerçekleştirilmiştir. 500 MPa basınçta preslenen ve 650
°C’de 2 saat süreyle sinterlenen toz
metal kompozit numunelerin mekanik testleri ve metalografik incelemeleri
yapılmıştır. Gerçekleştirilen uygulama ile takviye elemanının matris yapı
içerisinde homojen dağılımı ve kompozitin aşınma direnci başta olmak üzere
mekanik özelliklerinde iyileştirme hedeflenmiştir. Üretilen kompozit malzeme
üzerinden gerçekleştirilen metalografik incelemeler mekanik karıştırma ile
SiC’ün matris yapı içerisinde homojen dağılımının gerçekleştiğini gösterirken elde
edilen sertlik, kırma testi ve aşındırma testi sonuçları alüminyuma SiC ilavesinin
kompozit malzemenin mekanik özelliklerini önemli ölçüde iyileştiğini
göstermektedir.

References

  • [1] William, C., Harrigan, Jr., “Commercial processing of metal matrix composites”, Materials Science and Engineering, A244: 75 - 79, 1998.
  • [2] Rosso M. “Ceramic and metal matrix composites: Routes and properties”, Journal of Materials Processing Technology, 175: 364 - 375, 2006.
  • [3] Kırmızı, G., Arık, H., Çinici, H., “Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites”, Composites Part B, 164: 345 - 357, 2019.
  • [4] Deuis, R.L., Subramanian, C., Yellup, J.M., “Abrasive wear of aluminium composites - a review”, Wear, 201: 132 - 134, 1996.
  • [5] YU, P., Mei, Z., Tjong, S.C., “Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles”, Materials Chemistry and Physics, 93: 109-116, 2005.
  • [6] Miracle, D.B., “Metal matrix composites - from science to technological significance”, Composites Science and Technology, 65: 2526 - 2540, 2005.
  • [7] Smagorinski, M.E., Tsantrizos, P.G., Grenier, S., et all., “The properties and microstructure of Al - based composites reinforced with ceramic particles”, Materials Science and Engineering, A244: 86 - 90, 1998.
  • [8] Kaczmar, J.W., Pietrzak, K. W., Wlosinski, W., “The production and application of metal matrix composite materials”, Journal of Materials Processing Technology, 106: 58 - 67, 2000.
  • [9] Donnell, G.O., Looney, L., “Production of aluminium matrix composite components using conventional PM technology”, Materials Science and Engineering, A303: 292 - 301, 2001.
  • [10] Kök, M., “Production and mechanical properties of Al2O3 particle - reinforced 2024 aluminium alloy composites”, Journal of Materials Processing Technology, 161: 381 - 387, 2005.
  • [11] Şahin, Y., “Preparation and some properties of SiC particle reinforced aluminium alloy composites”, Materials and Design, 24: 671 - 679, 2003.
  • [12] Bedir, F., “Alüminyum kompozitlerin üretimi, karakteristik özellikleri ve endüstriyel uygulamaları”, Mühendis ve Makine, 47: 554, 28 - 35 2006.
  • [13] Ekinci, V.Ş., Bağcı, C., Arık, H., “Effect of Al2O3 content and milling time on microstructure and mechanical properties of aluminum metal matrix composites”, Experimental Techniques, 38: 66 - 73, 2011.
  • [14] Kurt, H., Arık, H., Bağcı, C., “Abrasıve wear, structure, and mechanical aspects of Al-Al2O3 composites fabricated using various mixing media during P/M routes”, Powder Metallurgy and Metal Ceramics, 55: 3 - 4, 141-151, 2016.
  • [15] Singh, R.K., Telang, A., Das, S., “High stress abrasive wear behaviour of aluminium ally and composite: A Review”, ARPN Journal of Engineering and Applied Sciences, 10: (18), 8025 - 8037, 2015.
  • [16] Vencl, A., Rac, A., Bobic, I., Miskoviç, Z., “Tribological properties of Al-Si alloy A356 reinforced with Al2O3 particles”, Tribology in industry, 28: (1&2), 27 - 31, 2006.
  • [17] Londhe, V.D., Mhaske, M.S., Kapgate, R.A., “Evaluation of tribological behaviour of LM13 – silicon carbide composite under ambient & elevated temperature”, International Journal of Scientific Research Engineering & Technology, 3: (3), 334 - 340, 2014.
  • [18] Naveen Kumar, G., Mahidhar Reddy, V., et all. “Study of abrasive wear behavior of AA 6063/TiCp in-situ composıtes”, International Journal of Mechanical Engineering and Technology, 8: (5), 42 - 52, 2017.
  • [19] Rao, Ch.M., Rao, K.M., “ Abrasive wear behavior of TiB2 fabricated aluminum 6061”, materials today: proceedings, 5: 268 - 275, 2018.
  • [20] Samarai, R. A. A., Ahmad, K. R., Douri, Y.A., “ Effect of load and sliding speed on wear and friction of aluminum-silicon casting alloy”, International Journal of Scientific and Research Publications, 2: (3), 1 - 4, 2012.
  • [21] Şahin, Y., “Abrasive wear behaviour of SiC/2014 aluminium composite”, Tribology International, 43: 939-943, 2010.
  • [22] Kumar, G.B.V., Rao, C.S.P. Selvaraj, N., “ Studies on mechanical and dry sliding wear of Al6061–SiC composites”, Composites: Part B, 43: 1185-1191, 2012.
  • [23] Ahemad, J, Bhaskar, S.V., et all. “Development of Al/SiC 5%, Al/SiC 10%, Al/SiC 15%, metal matrix composite and its comparision with aluminium alloy – LM25 on tribological parameters”, International Journal of Emerging Technology and Advanced Engineering, 3: (9), 545-549, 2013.
  • [24] Arik, H., “Production and characterization of in situ Al4C3 reinforced aluminumbased composite produced by mechanical alloying technique”, Materials and Design, 25: 31- 40, 2004.
  • [25] Özeker, M.B., Arık, H., Özçatalbaş, Y., “Investigation of wear behaviour of aluminium matrix and B4C reinforced composite powder metal parts produced by hot pressing method”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Cappadocia/Turkey, June 21-23 2019.
  • [26] Dixit, G., Khan, M.M., “ Sliding Wear Response of an Aluminium Metal Matrix Composite: Effect of Solid Lubricant Particle Size”, Jordan Journal of Mechanical and Industrial Engineering, 8: 351-358, 2014.
Year 2019, Volume: 7 Issue: 3, 741 - 754, 27.09.2019
https://doi.org/10.29109/gujsc.587637

Abstract

References

  • [1] William, C., Harrigan, Jr., “Commercial processing of metal matrix composites”, Materials Science and Engineering, A244: 75 - 79, 1998.
  • [2] Rosso M. “Ceramic and metal matrix composites: Routes and properties”, Journal of Materials Processing Technology, 175: 364 - 375, 2006.
  • [3] Kırmızı, G., Arık, H., Çinici, H., “Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites”, Composites Part B, 164: 345 - 357, 2019.
  • [4] Deuis, R.L., Subramanian, C., Yellup, J.M., “Abrasive wear of aluminium composites - a review”, Wear, 201: 132 - 134, 1996.
  • [5] YU, P., Mei, Z., Tjong, S.C., “Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles”, Materials Chemistry and Physics, 93: 109-116, 2005.
  • [6] Miracle, D.B., “Metal matrix composites - from science to technological significance”, Composites Science and Technology, 65: 2526 - 2540, 2005.
  • [7] Smagorinski, M.E., Tsantrizos, P.G., Grenier, S., et all., “The properties and microstructure of Al - based composites reinforced with ceramic particles”, Materials Science and Engineering, A244: 86 - 90, 1998.
  • [8] Kaczmar, J.W., Pietrzak, K. W., Wlosinski, W., “The production and application of metal matrix composite materials”, Journal of Materials Processing Technology, 106: 58 - 67, 2000.
  • [9] Donnell, G.O., Looney, L., “Production of aluminium matrix composite components using conventional PM technology”, Materials Science and Engineering, A303: 292 - 301, 2001.
  • [10] Kök, M., “Production and mechanical properties of Al2O3 particle - reinforced 2024 aluminium alloy composites”, Journal of Materials Processing Technology, 161: 381 - 387, 2005.
  • [11] Şahin, Y., “Preparation and some properties of SiC particle reinforced aluminium alloy composites”, Materials and Design, 24: 671 - 679, 2003.
  • [12] Bedir, F., “Alüminyum kompozitlerin üretimi, karakteristik özellikleri ve endüstriyel uygulamaları”, Mühendis ve Makine, 47: 554, 28 - 35 2006.
  • [13] Ekinci, V.Ş., Bağcı, C., Arık, H., “Effect of Al2O3 content and milling time on microstructure and mechanical properties of aluminum metal matrix composites”, Experimental Techniques, 38: 66 - 73, 2011.
  • [14] Kurt, H., Arık, H., Bağcı, C., “Abrasıve wear, structure, and mechanical aspects of Al-Al2O3 composites fabricated using various mixing media during P/M routes”, Powder Metallurgy and Metal Ceramics, 55: 3 - 4, 141-151, 2016.
  • [15] Singh, R.K., Telang, A., Das, S., “High stress abrasive wear behaviour of aluminium ally and composite: A Review”, ARPN Journal of Engineering and Applied Sciences, 10: (18), 8025 - 8037, 2015.
  • [16] Vencl, A., Rac, A., Bobic, I., Miskoviç, Z., “Tribological properties of Al-Si alloy A356 reinforced with Al2O3 particles”, Tribology in industry, 28: (1&2), 27 - 31, 2006.
  • [17] Londhe, V.D., Mhaske, M.S., Kapgate, R.A., “Evaluation of tribological behaviour of LM13 – silicon carbide composite under ambient & elevated temperature”, International Journal of Scientific Research Engineering & Technology, 3: (3), 334 - 340, 2014.
  • [18] Naveen Kumar, G., Mahidhar Reddy, V., et all. “Study of abrasive wear behavior of AA 6063/TiCp in-situ composıtes”, International Journal of Mechanical Engineering and Technology, 8: (5), 42 - 52, 2017.
  • [19] Rao, Ch.M., Rao, K.M., “ Abrasive wear behavior of TiB2 fabricated aluminum 6061”, materials today: proceedings, 5: 268 - 275, 2018.
  • [20] Samarai, R. A. A., Ahmad, K. R., Douri, Y.A., “ Effect of load and sliding speed on wear and friction of aluminum-silicon casting alloy”, International Journal of Scientific and Research Publications, 2: (3), 1 - 4, 2012.
  • [21] Şahin, Y., “Abrasive wear behaviour of SiC/2014 aluminium composite”, Tribology International, 43: 939-943, 2010.
  • [22] Kumar, G.B.V., Rao, C.S.P. Selvaraj, N., “ Studies on mechanical and dry sliding wear of Al6061–SiC composites”, Composites: Part B, 43: 1185-1191, 2012.
  • [23] Ahemad, J, Bhaskar, S.V., et all. “Development of Al/SiC 5%, Al/SiC 10%, Al/SiC 15%, metal matrix composite and its comparision with aluminium alloy – LM25 on tribological parameters”, International Journal of Emerging Technology and Advanced Engineering, 3: (9), 545-549, 2013.
  • [24] Arik, H., “Production and characterization of in situ Al4C3 reinforced aluminumbased composite produced by mechanical alloying technique”, Materials and Design, 25: 31- 40, 2004.
  • [25] Özeker, M.B., Arık, H., Özçatalbaş, Y., “Investigation of wear behaviour of aluminium matrix and B4C reinforced composite powder metal parts produced by hot pressing method”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Cappadocia/Turkey, June 21-23 2019.
  • [26] Dixit, G., Khan, M.M., “ Sliding Wear Response of an Aluminium Metal Matrix Composite: Effect of Solid Lubricant Particle Size”, Jordan Journal of Mechanical and Industrial Engineering, 8: 351-358, 2014.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Halil Arık 0000-0001-6521-7399

Publication Date September 27, 2019
Submission Date July 5, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Arık, H. (2019). Toz Metalurjisi Metoduyla Al-SiC Kompozit Malzeme Üretimi ve Aşınma Özelliklerinin Araştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(3), 741-754. https://doi.org/10.29109/gujsc.587637

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526