Research Article
BibTex RIS Cite

Çan Linyitinden Elektroliz Yöntemi ile Hidrojen Üretiminde Çeşitli Parametrelerin Etkisinin İncelenmesi

Year 2019, Volume: 7 Issue: 4, 957 - 968, 24.12.2019
https://doi.org/10.29109/gujsc.601223

Abstract

Hidrojenin elektroliz yöntemi ile yüksek saflıkta elde edilebileceği
kaynaklar arasında olan kömür, düşük maliyeti ve büyük arz nedeniyle cazip bir
seçenektir. Bu çalışmada, Çanakkale/Çan linyiti-su bulamaçlarının elektrolizi
ile hidrojen üretimine etki eden çeşitli parametreler (kömür partikül
büyüklüğü, sıcaklık, karıştırma hızı, elektrot malzemesi ve Fe+2
iyonunun etkisi) incelenmiştir. Deneyler, iki elektrotlu (anot/katot)
elektroliz hücresinde, elektrolit olarak 1 M H2SO4 kullanılarak
asidik ortamda ve atmosferik basınçta gerçekleştirilmiştir. Atmosferik basınçta
gerçekleştirilen deneylerde elektrot olarak bakır-bakır ve çinko-çinko elektrot
kullanılmıştır. Sıcaklığın akım yoğunluğu üzerindeki etkisini belirleyebilmek
için, oda sıcaklığından 80oC'ye kadar düzenli aralıklarla ölçümler
yapılmıştır. Akım yoğunluğunun sıcaklıkla arttığı tespit edilmiştir. Ayrıca, üç
farklı partikül boyutunda (1-0,5 mm, 0,5-0,25 mm ve <0,25 mm) yapılan deneylerde, en yüksek akım yoğunluğu
değerleri en küçük partikül boyutunda elde edilmiştir. Fe+2 iyonunun
etkisi, kömür-su karışımına 0,1 M FeSO4 ilave edilerek sağlanmıştır
ve Fe+2 iyonu ilavesinin, akım yoğunluğunu 80°C ve 0,73 V'da
yaklaşık %60 artırdığı görülmüştür. Karıştırma hızının iki katına çıkarılması
ile de akım yoğunluğu 80°C ve 0,73 V’da %16 artmıştır. 

References

  • Peavey, M.A. (2002). Fuel From Water: Energy Independence With Hydrogen (10th Edition). Merit Products Inc., 10.
  • Momirlan M., Veziroğlu T.N. Current Status of Hydrogen Energy. Renewable and Sustainable Energy Reviews, 6 (141-179), (2002).
  • Santos, D. M. F., Sequeira, C. A. C. Hydrogen production by alkaline water electrolysis. Quimica Nova, 36 (8) (1176-1193), (2013).
  • Manabe, A., Kashiwase, M., Hashimoto, T., Hayashida, T., Kato, A., Hirao, K., Shimomura, I., Nagashima, I. Basic study of alkaline water electrolysis. Electrochimica Acta, 100 (249-256), (2013).
  • Zeng K, Zhang D.K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36 (307-326), (2010).
  • Massood, R.,Stiegel, G. J. Hydrogen from coal gasification: an economical pathway to a sustainable energy future. International Journal Of Coal Geology, 65 (173-190), (2005).
  • Steinberg, M., Cheng, H.C. Modern and prospective technologies for hydrogen production from fossil fuels, in T. N. Veziroğlu and A. N. Protsenko (eds.). Hydrogen Energy Progress VII, 2 (699-740), (1988).
  • Coughlin, R. W.,Farooque, M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic-oxidation. Journal of Applied Electrochemistry, 10 (729-740), (1980).
  • Coughlin, R.W., Farooque, M. Hydrogen production from coal, water and electrons. Nature, 279 (301-303), (1979).
  • Farooque, M, Coughlin, R.W. Anodic coal reaction lowers energy consumption of metal electrowinning. Nature, 280 (666-668), (1979).
  • Gong, X.Z., Wang, M.Y., Wang, Z., Guo, Z.C. Desulfurization of electrolyzed coal water slurry in HCl system with ionic liquids addition. Fuel Process Technology, 99 (6-12), (2012).
  • Lam, V., Li, G.C., Song, C.J., Chen, J.W., Fairbridge, C., Hui, R., Zhang, J.J. A review of electrochemical desulfurization technologies for fossil fuels. Fuel Process Technology, 98 (30-38), (2012).
  • Jin X, Botte, G.G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures. Journal of Power Sources, 171 (826-834), (2007).
  • Giddey, S., Kulkarni, A., Badwal, S.P.S. Low emission hydrogen generation through carbon assisted electrolysis. International Journal of Hydrogen Energy, 40 (70-74), (2015).
  • Becker, M. R., De Souza, M. O., De Souza, R. F., Fiegenbaum, F., Martini, E. M. A. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl ammonium-sulfonic acid ionic liquid as electrolyte. Journal of Power Sources, 280 (12-17), (2015).
  • Abreu, Y.D., Patil, P., Marquez, A.I., Botte, G.G. Characterization of electrooxidized Pittsburgh no.8 coal. Fuel, 12 (1-12), (2006).
  • Patil, P., Abreu, Y.D., Botte, G.G. Electrooxidation of coal slurries on different electrode materials. Journal of Power Sources, 158 (368–377), (2006).
  • Hesenova, A., Kınık, H. Titanyum ve karbon keçe üzerine platin ve platin/iridyum kaplama elektrodlarının kömür-su karışımlarının elektrolizindeki etkinliklerinin kıyaslanması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü e-dergi, 22 (1) (44-53), (2010).
  • Botte, G.G., Sahte, N. Assessment of coal and graphite electrolysis on carbon fiber electrodes. Journal of Power Sources, 161 (1) (513-523), (2006).
  • Hesenova, A., İçten, O., Meryemoğlu, B. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield. International Journal of Hydrogen Energy, 36 (12249-12258), (2011).
  • Gong, X., Guo, Z., Wanga, M., Wanga, Z. Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system. Energy Conversion and Management, 75 (431-437), (2013).
  • Aboushabana, M. R. (2012). Electrolysis of Coal and Carbon Slurry Suspensions, Doctor of Philosophy Thesis, The University of Texas at Arlington, Texas, USA,7.
  • Bockris, J. O.,Later, D. W., Murphy, O. J. Products found in the anodic oxidation of coal. International Journal of Hydrogen Energy, 10 (453-474), (1985).
  • Santos, D.M.F., Sljuki, B., Sequeira, C.A.C., Maccio, D., Saccone, A., Figueiredo, J.L. Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: proof-of-concept using platinumedysprosium alloys. Energy, 50 (486-492), (2013).
Year 2019, Volume: 7 Issue: 4, 957 - 968, 24.12.2019
https://doi.org/10.29109/gujsc.601223

Abstract

References

  • Peavey, M.A. (2002). Fuel From Water: Energy Independence With Hydrogen (10th Edition). Merit Products Inc., 10.
  • Momirlan M., Veziroğlu T.N. Current Status of Hydrogen Energy. Renewable and Sustainable Energy Reviews, 6 (141-179), (2002).
  • Santos, D. M. F., Sequeira, C. A. C. Hydrogen production by alkaline water electrolysis. Quimica Nova, 36 (8) (1176-1193), (2013).
  • Manabe, A., Kashiwase, M., Hashimoto, T., Hayashida, T., Kato, A., Hirao, K., Shimomura, I., Nagashima, I. Basic study of alkaline water electrolysis. Electrochimica Acta, 100 (249-256), (2013).
  • Zeng K, Zhang D.K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36 (307-326), (2010).
  • Massood, R.,Stiegel, G. J. Hydrogen from coal gasification: an economical pathway to a sustainable energy future. International Journal Of Coal Geology, 65 (173-190), (2005).
  • Steinberg, M., Cheng, H.C. Modern and prospective technologies for hydrogen production from fossil fuels, in T. N. Veziroğlu and A. N. Protsenko (eds.). Hydrogen Energy Progress VII, 2 (699-740), (1988).
  • Coughlin, R. W.,Farooque, M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic-oxidation. Journal of Applied Electrochemistry, 10 (729-740), (1980).
  • Coughlin, R.W., Farooque, M. Hydrogen production from coal, water and electrons. Nature, 279 (301-303), (1979).
  • Farooque, M, Coughlin, R.W. Anodic coal reaction lowers energy consumption of metal electrowinning. Nature, 280 (666-668), (1979).
  • Gong, X.Z., Wang, M.Y., Wang, Z., Guo, Z.C. Desulfurization of electrolyzed coal water slurry in HCl system with ionic liquids addition. Fuel Process Technology, 99 (6-12), (2012).
  • Lam, V., Li, G.C., Song, C.J., Chen, J.W., Fairbridge, C., Hui, R., Zhang, J.J. A review of electrochemical desulfurization technologies for fossil fuels. Fuel Process Technology, 98 (30-38), (2012).
  • Jin X, Botte, G.G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures. Journal of Power Sources, 171 (826-834), (2007).
  • Giddey, S., Kulkarni, A., Badwal, S.P.S. Low emission hydrogen generation through carbon assisted electrolysis. International Journal of Hydrogen Energy, 40 (70-74), (2015).
  • Becker, M. R., De Souza, M. O., De Souza, R. F., Fiegenbaum, F., Martini, E. M. A. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl ammonium-sulfonic acid ionic liquid as electrolyte. Journal of Power Sources, 280 (12-17), (2015).
  • Abreu, Y.D., Patil, P., Marquez, A.I., Botte, G.G. Characterization of electrooxidized Pittsburgh no.8 coal. Fuel, 12 (1-12), (2006).
  • Patil, P., Abreu, Y.D., Botte, G.G. Electrooxidation of coal slurries on different electrode materials. Journal of Power Sources, 158 (368–377), (2006).
  • Hesenova, A., Kınık, H. Titanyum ve karbon keçe üzerine platin ve platin/iridyum kaplama elektrodlarının kömür-su karışımlarının elektrolizindeki etkinliklerinin kıyaslanması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü e-dergi, 22 (1) (44-53), (2010).
  • Botte, G.G., Sahte, N. Assessment of coal and graphite electrolysis on carbon fiber electrodes. Journal of Power Sources, 161 (1) (513-523), (2006).
  • Hesenova, A., İçten, O., Meryemoğlu, B. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield. International Journal of Hydrogen Energy, 36 (12249-12258), (2011).
  • Gong, X., Guo, Z., Wanga, M., Wanga, Z. Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system. Energy Conversion and Management, 75 (431-437), (2013).
  • Aboushabana, M. R. (2012). Electrolysis of Coal and Carbon Slurry Suspensions, Doctor of Philosophy Thesis, The University of Texas at Arlington, Texas, USA,7.
  • Bockris, J. O.,Later, D. W., Murphy, O. J. Products found in the anodic oxidation of coal. International Journal of Hydrogen Energy, 10 (453-474), (1985).
  • Santos, D.M.F., Sljuki, B., Sequeira, C.A.C., Maccio, D., Saccone, A., Figueiredo, J.L. Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: proof-of-concept using platinumedysprosium alloys. Energy, 50 (486-492), (2013).
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Özgü Yörük This is me 0000-0001-7768-0313

Duygu Uysal Zıraman 0000-0002-8963-6026

Özkan Murat Doğan 0000-0003-3801-3141

Bekir Zühtü Uysal 0000-0002-9475-9194

Publication Date December 24, 2019
Submission Date August 3, 2019
Published in Issue Year 2019 Volume: 7 Issue: 4

Cite

APA Yörük, Ö., Uysal Zıraman, D., Doğan, Ö. M., Uysal, B. Z. (2019). Çan Linyitinden Elektroliz Yöntemi ile Hidrojen Üretiminde Çeşitli Parametrelerin Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 957-968. https://doi.org/10.29109/gujsc.601223

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526