Research Article
BibTex RIS Cite

Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi

Year 2020, Volume: 8 Issue: 1, 79 - 93, 23.03.2020
https://doi.org/10.29109/gujsc.618229

Abstract



Bu
çalışmada, bakır ve silisyum katkılarının Al-25Zn alaşımının mekanik ve
işlenebilirlik özellikleri üzerindeki etkisi deneysel olarak incelenmiştir.
İkili Al-25Zn, üçlü Al-25Zn-3Cu ve dörtlü Al-25Zn-3Cu-3Si alaşımlar indüksiyonla
ergitme ve kokil kalıba döküm yöntemi ile üretilerek mikroyapı ve mekanik
özellikleri belirlenmiştir. Kesme deneyleri, CNC torna tezgâhında CVD Al2O3
kaplamalı takım ile üçer farklı kesme hızı (250-350-450 m/dak) ve ilerleme
(0,05-0,1-0,15 mm/dev) ile birlikte 1,5 mm sabit kesme derinliği kullanılarak
gerçekleştirilmiştir. Al-25Zn alaşımının içyapısının alüminyumca zengin α dendritlerinden
ve çinkoca zengin interdendiritik η fazından oluştuğu gözlenmiştir. Bu alaşıma
yapılan %3 Cu ilavesi ile içyapıda intermetalik α ve α+η fazı ile birlikte θ
fazının oluştuğu, Al-25Zn-3Cu alaşımına yapılan %3 Si ilavesi ile α, α+η, θ
fazlarının yanı sıra
ötektik ve primer silisyum
parçacıklarının oluştuğu tespit edilmiştir.
Al-25Zn alaşımına Cu ve Al-25Zn-3Cu alaşımına ise Si ilavesi
ile sertlik, akma ve çekme dayanımının arttığı, kopma uzamasının azaldığı
belirlenmiştir. İşlenebilirlik deneyleri sonucunda, kesme kuvvetlerinin en
yüksek Al-25Zn-3Cu-3Si en düşük ise Al-25Zn-3Cu alaşımlarının işlenmesinde
ölçüldüğü gözlenmiştir. En düşük yüzey pürüzlülüğü değerlerinin tüm kesme hızlarında
ve 0,05-0,1 mm/dev ilerleme oranlarında Al-25Zn alaşımında ve 0,15 mm/dev
ilerlemede ise Al-25Zn-3Cu alaşımında ölçüldüğü tespit edilmiştir. En yüksek
yüzey pürüzlülüğü değerleri ise tüm kesme hızlarında Al-25Zn-3Cu-3Si alaşımında
olduğu belirlenmiştir.




Supporting Institution

TÜBİTAK

Project Number

1919B011702369

Thanks

Bu çalışma, “2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı” kapsamında 1919B011702369 numaralı proje ile TÜBİTAK tarafından desteklenmiştir.

References

  • [1] Ataç A, Özyürek D, Güral A. Mekanik Alaşımlama ile Üretilmiş Çinko-Alüminyum (ZA) Alaşımlarının Kuru Sürtünmeli Aşınma Davranışlarının İncelenmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 2 (309-313), (2014).
  • [2] Calayag T. Zinc Alloys Replace Bronze in Mining Equipment Bushings and Bearings, Mining Engineering, 35 (727-728), (1983).
  • [3] Geng H, Ma J. Friction and Wear of Al-Zn-Pb Bearings Alloy, Wear, 169 (201-207), (1993).
  • [4] Mihaichuk W, Bess M.L. The ZA Die Casting Alloys, Society of Automotive Engineers, 95 (560-568), (1986).
  • [5] Savaşkan T, Murphy S. Mechanical Properties and Lubricated wear of Zn-25A1- Based Alloys, Wear, 116 (211-224), (1987).
  • [6] Gross DK. ZincAlloys: Specifications and Processing, Society of Automotive Engineers, 1039-1046, (1987)
  • [7] Zhu Y, Yan B, Huan W. Bearing Wear Resistance of Monotectoid Zn-Al Based Alloy (ZA-35), Materials Science and Technology, 11 (109-113), (1995).
  • [8] Savaşkan T, Çuvalcı H. Çinko-Alüminyum Esaslı Yatak Alaşımlarının Tribolojik Özelliklerinin İncelenmesi, 4. Ulusal Makina Tasarımı ve İmalat Kongresi, Ankara, (328-336), (1990).
  • [9] Erdoğan M. 2001. Demir Dışı Alaşımlar Mühendislik Alaşımlarının Yapı ve Özellikleri, Ankara: Nobel Yayın Dağıtım, 339, 372.
  • [10] Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology, 209 (3125-3137), (2008).
  • [11] Manna A, Bhattacharayya B. Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25 (850-856), (2005).
  • [12] Sasimurugan T. Palanikumar K. Analysis of the Machining Characteristics on Surface Roughness of a Hybrid Aluminium Metal Matrix Composite (Al6061-SiC-Al2O3), Journal of Minerals & Materials Characterization & Engineering, 10 (1213-1224), (2011).
  • [13] Bhushan RK. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites, Journal of Cleaner Production, 39 (242-254), (2013).
  • [14] Davoodi B, Tazehkand AH. Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid, Journal of Cleaner Production, 68 (234-242), (2014).
  • [15] Demir H, Gündüz S. The effects of aging on machinability of 6061 aluminium alloy, Materials & Design, 30 (1480-1483), (2009).
  • [16] Dos Santos GR, Da Costa DD, Amorim FL, Torre RD. Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning of Al-Si alloys, Surface and Coatings Technology, 202 (1029-1033), (2007).
  • [17] Muthukrishnan N, Murugan M, Prahlada Rao K. An investigation on the machinability of Al-SiC metal matrix composites using pcd inserts, The International Journal of Advanced Manufacturing Technology, 38 (447-454), (2008).
  • [18] Sekmen M, Günay M, Şeker U. Alüminyum alaşımlarının işlenmesinde kesme hızı ve talaş açısının yüzey pürüzlülüğü, yığıntı talaş ve yığıntı katmanı oluşumu üzerine etkisi, Politeknik Dergisi, 18 (141-148), (2015).
  • [19] Gökkaya H, Nalbant M. Kesme hızının yığıntı katmanı ve yığıntı talaş oluşumu üzerindeki etkilerinin SEM ile incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22 (481-488), (2007).
  • [20] Auer H, Mann KE. Magnetic Investigation of Zinc Aluminum System, Zeitschrift für Metallkunde, 28 (323-326), (1936).
  • [21] Presnyakov AA, Gorban YA, Chrevyakova VV. The Aluminum-Zinc Phase Diagram, Journal of Physical Chemistry, 35 (632-633), (1961).
  • [22] Savaşkan T. 2017. Malzeme Bilimi ve Malzeme Muayenesi, İstanbul: Papatya Yayınevi.
  • [23] Kuznetsov GM, Barsukov AD, Krivosheeva GB. Calculation of Phase Equilibria of The Al-Zn System, Russian Metallurgy, 5 (195-198), (1986).
  • [24] Hekimoğlu AP, Turan YE. Çinko Oranının Al-(5-50) Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (16-25), (2019).
  • [25] Gonçalves RA, Silva MB. Influence of copper content on 6351 aluminum alloy machinability, Procedia Manufacturing, 1 (683-695), (2015).
  • [26] Savaşkan T, Bican O, Alemdağ Y. Developing aluminium-zinc-based a new alloy for tribological applications, Journal of Material Science, 44 (1969-1976), (2009).
  • [27] Bican O, Savaşkan T. A comparative study of lubricated friction and wear behaviour of Al-25Zn-3Cu-3Si bearing alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228 (896-903), (2014).
  • [28] Savaşkan T, Bican O. Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Materials Science Engineering A, 404 (259-269), (2005).
  • [29] Lee P, Savaşkan T, Laufer E. Wear resistance and microstructure of Zn-Al-Si and Zn-Al-Cu alloys, Wear, 117 (79-89), (1987).
  • [30] Alemdağ Y, Savaşkan T. Effects of silicon content on the mechanical properties and lubricated wear behaviour of Al-40Zn-3Cu-(0-5)Si alloys, Tribology Letters, 29 (221-227), (2008).
  • [31] Bican O, Savaşkan T. Dry Sliding Friction and Wear Properties of Al-25Zn-3Cu-(0.5Si) Alloys in the As-Cast and Heat-Treated Conditions, Tribology Letters, 40 (327-336), (2012).
  • [32] Savaşkan T, Bican O. Dry sliding friction and wear properties of Al–25Zn-3Cu-3Si alloy, Tribology International, 43 (1346-1352), (2010).
  • [33] Bouacha K, Yallese MA, Mabrouki T, Rigal JF. Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals and Hard Materials, 28 (349-361), (2010).
  • [34] Sharma VS, Dhiman S, Sehgal R, Sharma SK. Estimation of cutting forces and surface roughness for hard turning using neural networks, Journal of intelligent Manufacturing, 19 (473-483), (2008).
  • [35] Konca E, Cheng YT, Weiner AM, Dasch JM, Alpas AT. Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy, Surface and Coatings Technology, 200 (3996-4005), (2006).
  • [36] Roy P, Sarangi SK, Ghosh A, Chattopadhyay AK. Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts, International Journal of Refractory Metals and Hard Materials, 27 (535-544), (2009).
  • [37] Zeren M, Karakulak E, Gümüş S. Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys, Transactions of Nonferrous Metals Society of China, 21 (1698-1702), (2011).
  • [38] Basavakumar KG, Mukunda PG, Chakraborty M. Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al-7Si and Al-7Si-2.5 Cu cast alloys, Journal of Material Science, 42 (8714-8724), (2007).
  • [39] Froehlich AR, Jacques RC, Strohaecker TR, Mombru R. The correlation of machinability and microstrutural characteristics of different extruded aluminum alloys, Journal of Materials Engineering and Performance 16 (784-791), (2007).
  • [40] Pul M, Şeker U. Metal Matrisli Kompozitlerin Tornalanmasında İlerleme Oranının Kesici Takım Aşınma Davranışlarına Etkisi, Politeknik Dergisi, 17 (99-106), (2014).
  • [41] Gómez-Parra A, Álvarez-Alcón M, Salguero J, Batista M, Marcos M. Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear, 302 (1209-1218), (2013).
  • [42] Rubio EM, Camacho AM, Sánchez-Sola JM, Marcos M. Chip arrangement in the dry cutting of aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering, 16 (164-170), (2006).
  • [43] Batista M, Salguero J, Gómez A, Carrilero MS, Álvarez M, Marcos Bárcena M. Identification, analysis and evolution of the mechanisms of wear for secondary adhesion for dry turning processes of Al-Cu alloys, Advanced Materials Research, 107 (141-146), (2010).
Year 2020, Volume: 8 Issue: 1, 79 - 93, 23.03.2020
https://doi.org/10.29109/gujsc.618229

Abstract

Project Number

1919B011702369

References

  • [1] Ataç A, Özyürek D, Güral A. Mekanik Alaşımlama ile Üretilmiş Çinko-Alüminyum (ZA) Alaşımlarının Kuru Sürtünmeli Aşınma Davranışlarının İncelenmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 2 (309-313), (2014).
  • [2] Calayag T. Zinc Alloys Replace Bronze in Mining Equipment Bushings and Bearings, Mining Engineering, 35 (727-728), (1983).
  • [3] Geng H, Ma J. Friction and Wear of Al-Zn-Pb Bearings Alloy, Wear, 169 (201-207), (1993).
  • [4] Mihaichuk W, Bess M.L. The ZA Die Casting Alloys, Society of Automotive Engineers, 95 (560-568), (1986).
  • [5] Savaşkan T, Murphy S. Mechanical Properties and Lubricated wear of Zn-25A1- Based Alloys, Wear, 116 (211-224), (1987).
  • [6] Gross DK. ZincAlloys: Specifications and Processing, Society of Automotive Engineers, 1039-1046, (1987)
  • [7] Zhu Y, Yan B, Huan W. Bearing Wear Resistance of Monotectoid Zn-Al Based Alloy (ZA-35), Materials Science and Technology, 11 (109-113), (1995).
  • [8] Savaşkan T, Çuvalcı H. Çinko-Alüminyum Esaslı Yatak Alaşımlarının Tribolojik Özelliklerinin İncelenmesi, 4. Ulusal Makina Tasarımı ve İmalat Kongresi, Ankara, (328-336), (1990).
  • [9] Erdoğan M. 2001. Demir Dışı Alaşımlar Mühendislik Alaşımlarının Yapı ve Özellikleri, Ankara: Nobel Yayın Dağıtım, 339, 372.
  • [10] Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology, 209 (3125-3137), (2008).
  • [11] Manna A, Bhattacharayya B. Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25 (850-856), (2005).
  • [12] Sasimurugan T. Palanikumar K. Analysis of the Machining Characteristics on Surface Roughness of a Hybrid Aluminium Metal Matrix Composite (Al6061-SiC-Al2O3), Journal of Minerals & Materials Characterization & Engineering, 10 (1213-1224), (2011).
  • [13] Bhushan RK. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites, Journal of Cleaner Production, 39 (242-254), (2013).
  • [14] Davoodi B, Tazehkand AH. Experimental investigation and optimization of cutting parameters in dry and wet machining of aluminum alloy 5083 in order to remove cutting fluid, Journal of Cleaner Production, 68 (234-242), (2014).
  • [15] Demir H, Gündüz S. The effects of aging on machinability of 6061 aluminium alloy, Materials & Design, 30 (1480-1483), (2009).
  • [16] Dos Santos GR, Da Costa DD, Amorim FL, Torre RD. Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning of Al-Si alloys, Surface and Coatings Technology, 202 (1029-1033), (2007).
  • [17] Muthukrishnan N, Murugan M, Prahlada Rao K. An investigation on the machinability of Al-SiC metal matrix composites using pcd inserts, The International Journal of Advanced Manufacturing Technology, 38 (447-454), (2008).
  • [18] Sekmen M, Günay M, Şeker U. Alüminyum alaşımlarının işlenmesinde kesme hızı ve talaş açısının yüzey pürüzlülüğü, yığıntı talaş ve yığıntı katmanı oluşumu üzerine etkisi, Politeknik Dergisi, 18 (141-148), (2015).
  • [19] Gökkaya H, Nalbant M. Kesme hızının yığıntı katmanı ve yığıntı talaş oluşumu üzerindeki etkilerinin SEM ile incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22 (481-488), (2007).
  • [20] Auer H, Mann KE. Magnetic Investigation of Zinc Aluminum System, Zeitschrift für Metallkunde, 28 (323-326), (1936).
  • [21] Presnyakov AA, Gorban YA, Chrevyakova VV. The Aluminum-Zinc Phase Diagram, Journal of Physical Chemistry, 35 (632-633), (1961).
  • [22] Savaşkan T. 2017. Malzeme Bilimi ve Malzeme Muayenesi, İstanbul: Papatya Yayınevi.
  • [23] Kuznetsov GM, Barsukov AD, Krivosheeva GB. Calculation of Phase Equilibria of The Al-Zn System, Russian Metallurgy, 5 (195-198), (1986).
  • [24] Hekimoğlu AP, Turan YE. Çinko Oranının Al-(5-50) Zn Alaşımlarının Yapısal ve Mekanik Özelliklerine Etkisi, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (16-25), (2019).
  • [25] Gonçalves RA, Silva MB. Influence of copper content on 6351 aluminum alloy machinability, Procedia Manufacturing, 1 (683-695), (2015).
  • [26] Savaşkan T, Bican O, Alemdağ Y. Developing aluminium-zinc-based a new alloy for tribological applications, Journal of Material Science, 44 (1969-1976), (2009).
  • [27] Bican O, Savaşkan T. A comparative study of lubricated friction and wear behaviour of Al-25Zn-3Cu-3Si bearing alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228 (896-903), (2014).
  • [28] Savaşkan T, Bican O. Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Materials Science Engineering A, 404 (259-269), (2005).
  • [29] Lee P, Savaşkan T, Laufer E. Wear resistance and microstructure of Zn-Al-Si and Zn-Al-Cu alloys, Wear, 117 (79-89), (1987).
  • [30] Alemdağ Y, Savaşkan T. Effects of silicon content on the mechanical properties and lubricated wear behaviour of Al-40Zn-3Cu-(0-5)Si alloys, Tribology Letters, 29 (221-227), (2008).
  • [31] Bican O, Savaşkan T. Dry Sliding Friction and Wear Properties of Al-25Zn-3Cu-(0.5Si) Alloys in the As-Cast and Heat-Treated Conditions, Tribology Letters, 40 (327-336), (2012).
  • [32] Savaşkan T, Bican O. Dry sliding friction and wear properties of Al–25Zn-3Cu-3Si alloy, Tribology International, 43 (1346-1352), (2010).
  • [33] Bouacha K, Yallese MA, Mabrouki T, Rigal JF. Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals and Hard Materials, 28 (349-361), (2010).
  • [34] Sharma VS, Dhiman S, Sehgal R, Sharma SK. Estimation of cutting forces and surface roughness for hard turning using neural networks, Journal of intelligent Manufacturing, 19 (473-483), (2008).
  • [35] Konca E, Cheng YT, Weiner AM, Dasch JM, Alpas AT. Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy, Surface and Coatings Technology, 200 (3996-4005), (2006).
  • [36] Roy P, Sarangi SK, Ghosh A, Chattopadhyay AK. Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts, International Journal of Refractory Metals and Hard Materials, 27 (535-544), (2009).
  • [37] Zeren M, Karakulak E, Gümüş S. Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys, Transactions of Nonferrous Metals Society of China, 21 (1698-1702), (2011).
  • [38] Basavakumar KG, Mukunda PG, Chakraborty M. Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al-7Si and Al-7Si-2.5 Cu cast alloys, Journal of Material Science, 42 (8714-8724), (2007).
  • [39] Froehlich AR, Jacques RC, Strohaecker TR, Mombru R. The correlation of machinability and microstrutural characteristics of different extruded aluminum alloys, Journal of Materials Engineering and Performance 16 (784-791), (2007).
  • [40] Pul M, Şeker U. Metal Matrisli Kompozitlerin Tornalanmasında İlerleme Oranının Kesici Takım Aşınma Davranışlarına Etkisi, Politeknik Dergisi, 17 (99-106), (2014).
  • [41] Gómez-Parra A, Álvarez-Alcón M, Salguero J, Batista M, Marcos M. Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear, 302 (1209-1218), (2013).
  • [42] Rubio EM, Camacho AM, Sánchez-Sola JM, Marcos M. Chip arrangement in the dry cutting of aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering, 16 (164-170), (2006).
  • [43] Batista M, Salguero J, Gómez A, Carrilero MS, Álvarez M, Marcos Bárcena M. Identification, analysis and evolution of the mechanisms of wear for secondary adhesion for dry turning processes of Al-Cu alloys, Advanced Materials Research, 107 (141-146), (2010).
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Şenol Bayraktar 0000-0001-8226-0188

Çiğdem Çamkerten This is me 0000-0002-0893-3169

Nurten Salihoğlu This is me 0000-0001-8378-619X

Project Number 1919B011702369
Publication Date March 23, 2020
Submission Date September 10, 2019
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Bayraktar, Ş., Çamkerten, Ç., & Salihoğlu, N. (2020). Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(1), 79-93. https://doi.org/10.29109/gujsc.618229

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526