Research Article
BibTex RIS Cite

Gliserinden Elektrokimyasal Yeniden Yapılandırma Yöntemiyle Hidrojen Üretimine Farklı Parametrelerin Etkisi

Year 2020, Volume: 8 Issue: 2, 439 - 450, 28.06.2020
https://doi.org/10.29109/gujsc.672326

Abstract

Günümüzde yeni ve temiz enerjilere duyulan ihtiyacın artmasıyla, hidrojen üretiminde çevreye daha az zararlı ve yenilenebilir kaynaklara dayalı teknolojilere yönelmek oldukça önemli hale gelmiştir. Çalışma kapsamında gliserinin elektrokimyasal yeniden yapılandırılması ile hidrojen üretimi ve bu sayede biyodizel üretiminde yan ürün olarak oluşan gliserinin değerli kimyasallara, alternatif yakıtlara dönüştürülebilmesi amaçlanmıştır. Gliserinden hidrojen üretimiyle biyodizelin yan ürünü olan gliserinin etkin bir şekilde kullanılmasının ekonomik açıdan ek fayda sağlaması hedeflenmiştir. Gliserinin moleküler yapısında bulunan 3 adet –OH grubunun hidrojen oluşumunda sağladığı işlevsellikten yararlanılarak gliserinden hidrojen üretimi gerçekleştirilmiştir. Bu sayede yenilenebilir kaynaklardan yüksek saflıkta, herhangi başka bir saflaştırma işlemine gerek duyulmadan yenilikçi bir yöntem ile hidrojen üretimi gerçekleştirilmiştir.
Çalışma kapsamında sistemde yapılan parametre çalışmalarıyla, farklı çalışma koşulları altında sistemin performansı değerlendirilip, sistem için en uygun koşullar belirlenmiştir. Gliserin çözeltisi konsantrasyonu, elektrot malzemesi, elektrotlar arası mesafe, elektrolit, sıcaklık, çözelti karıştırılmasının etkisi, elektrolite ilave edilen katkı malzemesinin etkisi incelenerek hidrojen üretimine katkısı irdelenmiştir. Elektrolit olarak H2SO4 kullanıldığı durumda elde edilen 0,4 M gliserin çözeltisi optimum çözelti olarak belirlenmiştir. En yüksek akım yoğunluğu değerine Zn/Zn elektrot çifti kullanıldığı durumda ulaşılmıştır. Bu değerler 0,5, 1 ve 1,5 V için sırasıyla 8,5, 17,7 ve 25,1 mA/cm2’dir.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

06/2019-03

Thanks

Bu çalışmanın bir bölümü Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi (Proje No: 06/2019-03) tarafından desteklenmiştir. Katkılarından dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkürlerimizi sunarız.

References

  • Aslan, Ö., Özcan, B. Sürdürülebilir Kalkınma ve Hidrojen Enerjisi. e-Journal of New World Sciences Academy, 3, 2, (152-160), (2008).
  • Marshall, A. T., Haverkamp, R. G. Production of hydrogen by the electrochemical reforming of glycerol– water solutions in a PEM electrolysis cell. Int. J. Hydrogen Energy 33, (4649-4654), (2008).
  • Karinen, R.S., Krause, A.O.I. New biocomponents from glycerol. Appl Catal A, 306, (128–133), (2006).
  • Özgür, Ö. D., Uysal, B. Z. Hydrogen production by aqueous phase catalytic reforming of glycerine. Biomass and Bioenergy, 35, (822-826), (2011).
  • Melero, J.A., Vicente, G., Morales, G., Paniagua, M., Moreno, J.M., Roldan, R., Ezquerro, A., Perez, C. Acid-catalyzed Etherification of Bio-glycerol and Isobutylene over Sulfonic Mesostructured Silicas. Applied Catalysis A: General, 346, 1-2, (44-51), (2008).
  • Uysal, B.Z. Biyodizel Prosesi Yan Ürünü Gliserinin Saflaştırılması ve Değerlendirilmesi. Biyoyakıt, 2, (22-24), 2006.
  • Czernik, S., French, R., Feik, C., Chornet, E. Production of hydrogen from biomass-derived liquids. Proceedings of the 2000 DOE Hydrogen Program Review, Colorado, NREL/CP-570-28890, (2000).
  • Hirai, T., Ikenaga, N., Miyake, T., Suzuki, T. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy &Fuels, 19, (1761-1762), (2005).
  • Adhikari, S., Fernando, S., Bricka, R. M., Steele, P. H., Haryanto, A. Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuel, 22, 2, (1220–1226), (2008).
  • Czernik, S., French, R., Feik, C., Chornet, E. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion process. Ind Eng Chem Res, 41, (4209–4215), (2002).
  • Slinn, M., Kendall, K., Mallon, C., Andrews, J. Steam reforming of biodiesel byproduct to make renewable hydrogen. Bioresour Technol, 99, (5851–5858), (2008).
  • Swami, S. M., Abraham, M. A. Integrated catalytic process for conversion of biomass to hydrogen. Energy Fuel, 20, (2616–2622), (2006).
  • Dauenhauer, P. J., Salge, J. R., Schmidt, L. D. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal, 244, (238–247), (2006).
  • The North American Catalysis society. Hydrogen production by aqueous-phase reforming of glycerol on supported metal catalysts. http://www.nacatsoc.org/20nam/abstracts/O-S12-14.pdf Son erişim tarihi:07.10.2018
  • Cortright, R. D., Davda, R. R., Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418, (964–966), (2002).
  • Iriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Guemez, M. B., Navarro, R. M. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal, 49, (46–58), (2008).
  • Chen, Y.X., Lavacchi, A., Miller, H.A., Bevilacqua, M., Filippi, J., Innicenti, M., Marchionni, A., Oberhauser, W., Wang, L., Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5, 4036, (2014).
  • De Paula, J., Nascimento, D., Linares, J.J. Electrochemical reforming of glycerol in alkaline PBI-based PEM reactor for hydrogen production. Chemical Engineering Transactions 41, (205-210), (2014).
  • Othman, R. M., Ahmad A. Electrochemıcal Oxıdatıon Of Glycerol Usıng Gold Electrode. Malaysian Journal of Analytical Sciences, 19, 2, (291–299), (2015).
  • Arjona, N., Rivas, S., Alvarez-Contreras, L., Guerra-Balcazar, M., Ledesma-Garcia, J., Kjeang, E., Arriaga, G. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New J.Chem., 41, 1854, (2017).
  • Pulido, D. F. Q., Kortenaar, M. V. T., Hurink, J. L., Smit, G. J. M. A practical approach in glycerol oxidation for the development of a glycerol fuel cell. Trends Green Chem., 3, 1, 5, (2017)
  • Schell, M., Xu, X., Zdraveski, Z. Mechanism for the Electrocatalyzed Oxidation of Glycerol Deduced from an Analysis of Chemical Instabilities. The Journal of Physical Chemistry, 100, 49, (19862-19869), (1996).
  • Kwon, Y., Schouten, K., J., Koper, T., M. Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrode. ChemCatChem, 3, 7, (1176-1185), (2011).
  • Muneeb, O., Estrada, J., Tran, L., Nguyen, K., Flores, J., Hu, S., Fry-Petit, A. M., Scudiero, L., Ha, S., Haan, J. L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper. Electrochimica Acta, 218, (133-139), (2016).
  • Yahiro, H., Matsunaga, Y., Asamoto, M., & Yamaji, T. Low Potential Electrolysis of Aqueous Glycerin Using Polymer Electrolyte Membrane. ECS Transactions 25, 1, (1943-1949), (2009).
  • Sasikumar, G., Muthumeenal, A., Pethaiah, S. S., Nachiappan, N., & Balaji, R. Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International journal of hydrogen energy, 33, 21, (5905-5910), (2008).
  • GP Association. Physical properties of glycerine and its solutions. Glycerine Producers’ Association (1963).
  • James, O. O., Sauter, W., Schröder, U. Towards selective electrochemical conversion of glycerol to 1, 3-propanediol. RSC advances, 8, 20, (10818-10827), (2018).
  • Kondo, T., Kamikawa, M., Oka, K., Matsuo, T., Tanto, M. Glycerin purification method. U.S. Patent No. 8,940,947, (2013).
Year 2020, Volume: 8 Issue: 2, 439 - 450, 28.06.2020
https://doi.org/10.29109/gujsc.672326

Abstract

Project Number

06/2019-03

References

  • Aslan, Ö., Özcan, B. Sürdürülebilir Kalkınma ve Hidrojen Enerjisi. e-Journal of New World Sciences Academy, 3, 2, (152-160), (2008).
  • Marshall, A. T., Haverkamp, R. G. Production of hydrogen by the electrochemical reforming of glycerol– water solutions in a PEM electrolysis cell. Int. J. Hydrogen Energy 33, (4649-4654), (2008).
  • Karinen, R.S., Krause, A.O.I. New biocomponents from glycerol. Appl Catal A, 306, (128–133), (2006).
  • Özgür, Ö. D., Uysal, B. Z. Hydrogen production by aqueous phase catalytic reforming of glycerine. Biomass and Bioenergy, 35, (822-826), (2011).
  • Melero, J.A., Vicente, G., Morales, G., Paniagua, M., Moreno, J.M., Roldan, R., Ezquerro, A., Perez, C. Acid-catalyzed Etherification of Bio-glycerol and Isobutylene over Sulfonic Mesostructured Silicas. Applied Catalysis A: General, 346, 1-2, (44-51), (2008).
  • Uysal, B.Z. Biyodizel Prosesi Yan Ürünü Gliserinin Saflaştırılması ve Değerlendirilmesi. Biyoyakıt, 2, (22-24), 2006.
  • Czernik, S., French, R., Feik, C., Chornet, E. Production of hydrogen from biomass-derived liquids. Proceedings of the 2000 DOE Hydrogen Program Review, Colorado, NREL/CP-570-28890, (2000).
  • Hirai, T., Ikenaga, N., Miyake, T., Suzuki, T. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy &Fuels, 19, (1761-1762), (2005).
  • Adhikari, S., Fernando, S., Bricka, R. M., Steele, P. H., Haryanto, A. Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuel, 22, 2, (1220–1226), (2008).
  • Czernik, S., French, R., Feik, C., Chornet, E. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion process. Ind Eng Chem Res, 41, (4209–4215), (2002).
  • Slinn, M., Kendall, K., Mallon, C., Andrews, J. Steam reforming of biodiesel byproduct to make renewable hydrogen. Bioresour Technol, 99, (5851–5858), (2008).
  • Swami, S. M., Abraham, M. A. Integrated catalytic process for conversion of biomass to hydrogen. Energy Fuel, 20, (2616–2622), (2006).
  • Dauenhauer, P. J., Salge, J. R., Schmidt, L. D. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal, 244, (238–247), (2006).
  • The North American Catalysis society. Hydrogen production by aqueous-phase reforming of glycerol on supported metal catalysts. http://www.nacatsoc.org/20nam/abstracts/O-S12-14.pdf Son erişim tarihi:07.10.2018
  • Cortright, R. D., Davda, R. R., Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418, (964–966), (2002).
  • Iriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Guemez, M. B., Navarro, R. M. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal, 49, (46–58), (2008).
  • Chen, Y.X., Lavacchi, A., Miller, H.A., Bevilacqua, M., Filippi, J., Innicenti, M., Marchionni, A., Oberhauser, W., Wang, L., Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5, 4036, (2014).
  • De Paula, J., Nascimento, D., Linares, J.J. Electrochemical reforming of glycerol in alkaline PBI-based PEM reactor for hydrogen production. Chemical Engineering Transactions 41, (205-210), (2014).
  • Othman, R. M., Ahmad A. Electrochemıcal Oxıdatıon Of Glycerol Usıng Gold Electrode. Malaysian Journal of Analytical Sciences, 19, 2, (291–299), (2015).
  • Arjona, N., Rivas, S., Alvarez-Contreras, L., Guerra-Balcazar, M., Ledesma-Garcia, J., Kjeang, E., Arriaga, G. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New J.Chem., 41, 1854, (2017).
  • Pulido, D. F. Q., Kortenaar, M. V. T., Hurink, J. L., Smit, G. J. M. A practical approach in glycerol oxidation for the development of a glycerol fuel cell. Trends Green Chem., 3, 1, 5, (2017)
  • Schell, M., Xu, X., Zdraveski, Z. Mechanism for the Electrocatalyzed Oxidation of Glycerol Deduced from an Analysis of Chemical Instabilities. The Journal of Physical Chemistry, 100, 49, (19862-19869), (1996).
  • Kwon, Y., Schouten, K., J., Koper, T., M. Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrode. ChemCatChem, 3, 7, (1176-1185), (2011).
  • Muneeb, O., Estrada, J., Tran, L., Nguyen, K., Flores, J., Hu, S., Fry-Petit, A. M., Scudiero, L., Ha, S., Haan, J. L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper. Electrochimica Acta, 218, (133-139), (2016).
  • Yahiro, H., Matsunaga, Y., Asamoto, M., & Yamaji, T. Low Potential Electrolysis of Aqueous Glycerin Using Polymer Electrolyte Membrane. ECS Transactions 25, 1, (1943-1949), (2009).
  • Sasikumar, G., Muthumeenal, A., Pethaiah, S. S., Nachiappan, N., & Balaji, R. Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International journal of hydrogen energy, 33, 21, (5905-5910), (2008).
  • GP Association. Physical properties of glycerine and its solutions. Glycerine Producers’ Association (1963).
  • James, O. O., Sauter, W., Schröder, U. Towards selective electrochemical conversion of glycerol to 1, 3-propanediol. RSC advances, 8, 20, (10818-10827), (2018).
  • Kondo, T., Kamikawa, M., Oka, K., Matsuo, T., Tanto, M. Glycerin purification method. U.S. Patent No. 8,940,947, (2013).
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Merve Gördesel 0000-0003-4035-3540

Duygu Uysal Zıraman 0000-0002-8963-6026

Murat Dogan 0000-0003-3801-3141

Bekir Zühtü Uysal 0000-0002-9475-9194

Project Number 06/2019-03
Publication Date June 28, 2020
Submission Date January 9, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Gördesel, M., Uysal Zıraman, D., Dogan, M., Uysal, B. Z. (2020). Gliserinden Elektrokimyasal Yeniden Yapılandırma Yöntemiyle Hidrojen Üretimine Farklı Parametrelerin Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(2), 439-450. https://doi.org/10.29109/gujsc.672326

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526