Research Article
BibTex RIS Cite

VORTEKS SOĞUTMA YÖNTEMİNİN TALAŞLI İMALAT YÖNTEMLERİ VE KESME PARAMETRELERİNE GÖRE İNCELENMESİ

Year 2020, Volume: 8 Issue: 3, 730 - 745, 27.09.2020
https://doi.org/10.29109/gujsc.727746

Abstract

Vorteks ile soğutma yöntemi son yıllarda araştırma konularında yer almakta ve kullanımı artış göstermektedir. Yapılan çalışmalar ile kesme işlemi üzerindeki etkileri incelenerek, çevre dostu bir soğutma yöntemi olduğu belirtilmektedir. Bu çalışmada vorteks soğutma yönteminin talaşlı imalat yöntemlerine ve kesme performansı üzerine etkileri ayrı başlıklar altında irdelenmiştir. Kesme işlemi üzerindeki performansının diğer soğutma yöntemlerine göre avantajları ve dezavantajları konusunda değerlendirmeler yapılmıştır. Bu değerlendirmeler sonucunda, Vorteks yönteminin kuru işleme, geleneksel sıvı soğutma ve geleneksel hava ile soğutmaya göre tornalama ve frezeleme yöntemlerindeki kesme işlemini olumlu yönde etkilediği gözlemlenmiştir. Kriyojenik ve MQL soğutma yöntemlerine göre ise bu etkinin daha az olduğu görülmüştür.

References

  • [1] Çakır, O., Kılıçkap, E., “Metallerin Soğuk Talaşlı İşlenmesi”, Makine Tasarım ve İmalat Teknolojileri Kongresi, Konya, 279-283, 2001.
  • [2] Çakır, O., M. Kıyak, and Erhan Altan. "Comparison of gases applications to wet and dry cuttings in turning." Journal of Materials Processing Technology 153 (2004): 35-41.
  • [3] Özçatalbaş, Yusuf, And B. A. Ş. Ali. "Tornalamada Hava Püskürtme İle Soğutmanın Kesme Kuvvetleri Ve Takım Ömrüne Etkilerinin Araştırılması." Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 21.3 (2006).
  • [4] Yamane, Yasuo, Norihiko Narutaki, and Katsura Hayashi. "Suppression of tool wear by using an inert gas in face milling." Journal of materials processing technology 62.4 (1996): 380-383.
  • [5] Boswell, Brian, and Tilak Chandratilleke. "Air-cooling used for metal cutting." American Jounal of Applied Science 6.2 (2009): 251-262.
  • [6] Kırmacı, Volkan. "Vorteks Tüpünde Akışkan Olarak Kullanılan Hava, Oksijen, Karbondioksit, Karışım Gazının Soğutma-Isıtma Sıcaklık Performanslarının Deneysel Olarak İncelenmesi." (2007).
  • [7] Yılmaz, M., Çomaklı, Ö., Kay, M., Karslı, S., ‘‘Vorteks Tüpler: 1- Teknolojik Gelişim’’, Mühendis ve Makine, 47, 554, s. 42-51, (2006).
  • [8] TMMOB Makina Mühendisleri Odası aylık ayın organı, Mühendis ve Makina Cilt:51, Sayı:610 (2010).
  • [9] Patwari, Anayet U., et al. "Thermal investigation of vortex generated green coolant on surface texture for drilling process." Procedia Engineering 105 (2015): 808-813.
  • [10] https://www.tesisat.org/vorteks-tupu-sogutma-sistemi.html
  • [11] Kırmacı, Volkan; Usta, Hüseyin; MENLIK, Tayfun. Vorteks Tüpünde Akışkan Olarakhava Oksijen Karbondioksit Azot Ve Argon Kullanılarak Isıtma-Sogutma Slcaklık Performanslarının Deneysel Olarak Karşılaştırılması. Sakarya University Journal of Science, 10.2 (2006): 39-44.
  • [12] Salaam, H. A., et al. "Minimum quantity lubrication (MQL) using Ranque–Hilsch vortex tube (RHVT) for sustainable machining." Applied Mechanics and Materials. Vol. 217. Trans Tech Publications Ltd, 2012.
  • [13] Kırmacı, Volkan. "Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air." international journal of refrigeration 32.7 (2009): 1626-1633.
  • [14] Rubio, E. M., et al. "Cooling systems based on cold compressed air: A review of the applications in machining processes." Procedia engineering 132.1 (2015): 413-418.
  • [15] Boswell, Brian, et al. "A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining." The International Journal of Advanced Manufacturing Technology 92.1-4 (2017): 321-340.
  • [16] Elshwain, A. E. I., Norizah Redzuan, and Noordin Mohd Yusof. "Machinability of Nickel and Titanium alloys under of gas-based coolant-lubricants (cls)–A Review." International Journal of Research in Engineering and Technology 2.11 (2013): 690-702.
  • [17] Cong, Weilong, and Z. J. Pei. "Dry machining using vortex-tube generated cold air as coolant: a literature review." ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. American Society of Mechanical Engineers Digital Collection, 2008.
  • [18] Ko, Tae Jo, Hee Sool Kim, and Bo Gu Chung. "Air–oil cooling method for turning of hardened material." The International Journal of Advanced Manufacturing Technology 15.7 (1999): 470-477.
  • [19] Liu, Jie, and Y. Kevin Chou. "Vortex-tube cooling for tool wear reduction in A390 dry machining." World Tribology Congress III. American Society of Mechanical Engineers Digital Collection, 2005.
  • [20] Liu, Jie, and Y. Kevin Chou. "On temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling." International Journal of Machine Tools and Manufacture 47.3-4 (2007): 635-645.
  • [21] Hu, Jing Shu, et al. Experimental investigation on air cooling of GCr15. In: Key Engineering Materials. Trans Tech Publications Ltd, 2008. p. 197-200.
  • [22] Sun, S., M. Brandt, and M. S. Dargusch. "Machining Ti–6Al–4V alloy with cryogenic compressed air cooling." International Journal of Machine Tools and Manufacture 50.11 (2010): 933-942.
  • [23] Selek, Murat, et al. "Experimental examination of the cooling performance of Ranque-Hilsch vortex tube on the cutting tool nose point of the turret lathe through infrared thermography method." International journal of refrigeration 34.3 (2011): 807-815.
  • [24] An, Q. L., Y. C. Fu, and J. H. Xu. "Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling." International Journal of Machine Tools and Manufacture 51.6 (2011): 549-555.
  • [25] Liu, Nun-Ming, Ko-Ta Chiang, and Chen-Ming Hung. "Modeling and analyzing the effects of air-cooled turning on the machinability of Ti–6Al–4V titanium alloy using the cold air gun coolant system." The International Journal of Advanced Manufacturing Technology 67.5-8 (2013): 1053-1066.
  • [26] Nelge, Balaji, et al. Thermal and Metallographic Investigation for H13A and AISI1050 using Vortex Tube Jet Assisted (VTJA) Machining, 2015.
  • [27] Yüksel, S., and A. Y. H. A. N. Onat. "Investigation of CNC Turning Parameters by Using a Vortex Tube Cooling System." Acta Physica Polonica A 127.4 (2015): 881-885.
  • [28] Balki, Nilesh; Nelge, Balaji; Ingle Asha. Experimental Investigation of Environment Friendly Cooling Methods for Different Machining Conditions. International Journal of Engineering Sciences&Research Technology, 6.11 (2017): 186-191.
  • [29] Ekinović, Sabahudin, et al. "Cold Air Dry Machining, Part 1: Experimental Setup." Journal of Trends in the Development of Machinery and Associated Technology 18.1 (2014): 39-42.
  • [30] Boswell, Brian, and Tilak Chandratilleke. "Air-cooling used for metal cutting." American Jounal of Applied Science 6.2 (2009): 251-262.
  • [31] Singh, GurRaj, and Vishal S. Sharma. "Analyzing machining parameters for commercially puretitanium (Grade 2), cooled using minimum quantity lubrication assisted by a Ranque-Hilsch vortex tube." The International Journal of Advanced Manufacturing Technology 88.9-12 (2017): 2921-2928.
  • [32] Fernandez, David, et al. "Comparison of machining Inconel 718 with conventional and sustainable coolant." MM Science Journal 514 (2014): 506-510.
  • [33] Naumov, Alexander, et al. "System of High-performance Cutting with Enhanced Combined Effect of Cooling and Lubrication Medium Based on Ranque-hilsch Effect." Procedia CIRP 57 (2016): 457-460.
  • [34] Boswell, Brian, and Mohammad Nazrul Islam. "Sustainable cooling method for machining titanium alloy." IOP Conference Series: Materials Science and Engineering. Vol. 114. No. 1. IOP Publishing, 2016.
  • [35] Sanchez, Luiz EA; Scalon, Vicente L.; Abreu, Guilherme GC. Cleaner machining through a toolholder with internal cooling. In: 3rd International Workshop Advances in cleaner production. Brazil. 2011.
  • [36] Onat, A., S. Yüksel, and S. Hartomacıoğlu. "OPTIMIZATION OF CUTTING PARAMETERS OF TURNING OPERATION WITH VORTEX TUBE COOLING SYSTEM USING ARTIFICIAL NEURAL NETWORK METHOD." Machines. Technologies. Materials. 11.9 (2017): 439-442.
  • [37] Taha, Zahari, et al. "Vortex tube air cooling: The effect on surface roughness and power consumption in dry turning." International Journal of Automotive and Mechanical Engineering 8 (2013): 1477.
  • [38] Kostadin, Tihana, Goran Cukor, and S. Jakovljevic. "Analysis of corrosion resistance when turning martensitic stainless steel X20Cr13 under chilled air-cooling." Advances in Production Engineering & Management 12.2 (2017): 105.
  • [39] Gupta, Upendra Sharan, et al. A Proposed Method For Coolıng Of Conventıonal Machınes By Vortex Tube Refrıgeratıon. 2017
  • [40] Pinar, Ahmet Murat, Serhat Filiz, and Bekir Sadık Ünlü. "A comparison of cooling methods in the pocket milling of AA5083-H36 alloy via Taguchi method." The International Journal of Advanced Manufacturing Technology 83.9-12 (2016): 1431-1440.
  • [41] Su, Y., et al. "Refrigerated cooling air cutting of difficult-to-cut materials." International Journal of Machine Tools and Manufacture 47.6 (2007): 927-933.
  • [42] Yalçın, B., A. E. Özgür, and M. Koru. "The effects of various cooling strategies on surface roughness and tool wear during soft materials milling." Materials & Design 30.3 (2009): 896-899.
  • [43] Alsayyed, Basel, Mohammad O. Hamdan, and Saud Aldajah. "Vortex Tube Impact on Cooling Milling Machining." ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2012.
  • [44] Yuan, Song Mei, et al. "Investigation of Machinability in Minimum Quantity Lubrication Milling of GH4169 Aerospace Superalloy." Applied Mechanics and Materials. Vol. 34. Trans Tech Publications Ltd, 2010.
  • [45]Safari, H., et al. "Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti–6Al-4V ELI." Materials and Manufacturing Processes 29.3 (2014): 350-356.
  • [46] Chockalingam, P., and Lee Hong Wee. "Surface roughness and tool wear study on milling of AISI 304 stainless steel using different cooling conditions." International Journal of Engineering and Technology 2.8 (2012): 1386-1391.
  • [47] Boswell, Brian, and Mohammad Nazrul Islam. "The challenge of adopting minimal quantities of lubrication for end milling aluminium." IAENG Transactions on Engineering Technologies. Springer, Dordrecht, 2013. 713-724.
  • [48] Ha, Seok Jae, et al. "Influence of cutting temperature on carbon fiber-reinforced plastic composites in high-speed machining." Journal of Mechanical Science and Technology 31.4 (2017): 1861-1867.
  • [49] Miranda-Giraldo, Michael, et al. "Burr formation and control for polymers micro-milling: A case study with vortex tube cooling." Dyna 84.203 (2017): 150-159.
  • [50] Perri, Gian Marco, et al. "Numerical modelling and analysis of the influence of an air cooling system on a milling machine in virtual environment." The International Journal of Advanced Manufacturing Technology 86.5-8 (2016): 1853-1864.
  • [51] Brandão, Lincoln Cardoso, Reginaldo Teixeira Coelho, and Alessandro Roger Rodrigues. "Experimental and theoretical study of workpiece temperature when end milling hardened steels using (TiAl) N-coated and PcBN-tipped tools." Journal of materials processing Technology 199.1-3 (2008): 234-244.
  • [52] Pınar, Ahmet; Filiz, Serhat. AA5083-H36 Malzemesinin Farklı Soğutma Ortamlarında Frezelenmesinde Çapak Oluşumunun İncelenmesi. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 12.2, 2006.
  • [53] Gisip, Judith, Rado Gazo, and Harold A. Stewart. "Effects of cryogenic treatment and refrigerated air on tool wear when machining medium density fiberboard." Journal of Materials Processing Technology 209.11 (2009): 5117-5122.
  • [54] Khairusshima, MK Nor, and I. S. S. Sharifah. "Study on tool wear during milling CFRP under dry and chilled air machining." Procedia engineering 184 (2017): 506-517.
  • [55] Nevala, Shawn E., et al. "Relative Effects of Cooling and Lubrication in Micro-milling of Aluminum and the Design of Atomization cooling and Lubrication systems." ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2012.
  • [56] Khairusshima, MK Nor, et al. "Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic." Wear 302.1-2 (2013): 1113-1123.
  • [57] Balmer, R. T. "Pressure-driven Ranque-Hilsch temperature separation in liquids." (1988): 161-164.
  • [58] Cong, W. L., et al. "Rotary ultrasonic machining of CFRP using cold air as coolant: feasible regions." Journal of Reinforced Plastics and Composites 30.10 (2011): 899-906.
  • [59] Cong, W. L., et al. "Dry machining of carbon fiber reinforced plastic composite by rotary ultrasonic machining: effects of machining variables." ASME 2011 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers Digital Collection, 2011.
  • [60] Cong, W. L., et al. "Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: using cutting fluid vs. cold air as coolant." Journal of Composite Materials 46.14 (2012): 1745-1753.
  • [61] Patwari, Anayet U., et al. "Thermal investigation of vortex generated green coolant on surface texture for drilling process." Procedia Engineering 105 (2015): 808-813.
  • [62] Lee, Pil-Ho, and Sang Won Lee. "Experimental characterization of micro-grinding process using compressed chilly air." International Journal of Machine Tools and Manufacture 51.3 (2011): 201-209.
  • [63] Choi, H. Z., S. W. Lee, and H. D. Jeong. "A comparison of the cooling effects of compressed cold air and coolant for cylindrical grinding with a CBN wheel." Journal of Materials Processing Technology 111.1-3 (2001): 265-268.
  • [64] Choi, Hon Zong, Suk Woo Lee, and Hae Do Jeong. "The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels." Journal of Materials Processing Technology 127.2 (2002): 155-158.
  • [65] Nguyen, Thai; Zhang, Liang Chi. A note on two cooling methods in surface grinding. In: Advanced Materials Research. Trans Tech Publications Ltd (2011). p. 5-8.
  • [66] Saberi, A., et al. "Improvement of surface grinding process performance of CK45 soft steel by Minimum Quantity Lubrication (MQL) technique using compressed cold air jet from vortex tube." Journal of cleaner production 131 (2016): 728-738.
Year 2020, Volume: 8 Issue: 3, 730 - 745, 27.09.2020
https://doi.org/10.29109/gujsc.727746

Abstract

References

  • [1] Çakır, O., Kılıçkap, E., “Metallerin Soğuk Talaşlı İşlenmesi”, Makine Tasarım ve İmalat Teknolojileri Kongresi, Konya, 279-283, 2001.
  • [2] Çakır, O., M. Kıyak, and Erhan Altan. "Comparison of gases applications to wet and dry cuttings in turning." Journal of Materials Processing Technology 153 (2004): 35-41.
  • [3] Özçatalbaş, Yusuf, And B. A. Ş. Ali. "Tornalamada Hava Püskürtme İle Soğutmanın Kesme Kuvvetleri Ve Takım Ömrüne Etkilerinin Araştırılması." Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 21.3 (2006).
  • [4] Yamane, Yasuo, Norihiko Narutaki, and Katsura Hayashi. "Suppression of tool wear by using an inert gas in face milling." Journal of materials processing technology 62.4 (1996): 380-383.
  • [5] Boswell, Brian, and Tilak Chandratilleke. "Air-cooling used for metal cutting." American Jounal of Applied Science 6.2 (2009): 251-262.
  • [6] Kırmacı, Volkan. "Vorteks Tüpünde Akışkan Olarak Kullanılan Hava, Oksijen, Karbondioksit, Karışım Gazının Soğutma-Isıtma Sıcaklık Performanslarının Deneysel Olarak İncelenmesi." (2007).
  • [7] Yılmaz, M., Çomaklı, Ö., Kay, M., Karslı, S., ‘‘Vorteks Tüpler: 1- Teknolojik Gelişim’’, Mühendis ve Makine, 47, 554, s. 42-51, (2006).
  • [8] TMMOB Makina Mühendisleri Odası aylık ayın organı, Mühendis ve Makina Cilt:51, Sayı:610 (2010).
  • [9] Patwari, Anayet U., et al. "Thermal investigation of vortex generated green coolant on surface texture for drilling process." Procedia Engineering 105 (2015): 808-813.
  • [10] https://www.tesisat.org/vorteks-tupu-sogutma-sistemi.html
  • [11] Kırmacı, Volkan; Usta, Hüseyin; MENLIK, Tayfun. Vorteks Tüpünde Akışkan Olarakhava Oksijen Karbondioksit Azot Ve Argon Kullanılarak Isıtma-Sogutma Slcaklık Performanslarının Deneysel Olarak Karşılaştırılması. Sakarya University Journal of Science, 10.2 (2006): 39-44.
  • [12] Salaam, H. A., et al. "Minimum quantity lubrication (MQL) using Ranque–Hilsch vortex tube (RHVT) for sustainable machining." Applied Mechanics and Materials. Vol. 217. Trans Tech Publications Ltd, 2012.
  • [13] Kırmacı, Volkan. "Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air." international journal of refrigeration 32.7 (2009): 1626-1633.
  • [14] Rubio, E. M., et al. "Cooling systems based on cold compressed air: A review of the applications in machining processes." Procedia engineering 132.1 (2015): 413-418.
  • [15] Boswell, Brian, et al. "A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining." The International Journal of Advanced Manufacturing Technology 92.1-4 (2017): 321-340.
  • [16] Elshwain, A. E. I., Norizah Redzuan, and Noordin Mohd Yusof. "Machinability of Nickel and Titanium alloys under of gas-based coolant-lubricants (cls)–A Review." International Journal of Research in Engineering and Technology 2.11 (2013): 690-702.
  • [17] Cong, Weilong, and Z. J. Pei. "Dry machining using vortex-tube generated cold air as coolant: a literature review." ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. American Society of Mechanical Engineers Digital Collection, 2008.
  • [18] Ko, Tae Jo, Hee Sool Kim, and Bo Gu Chung. "Air–oil cooling method for turning of hardened material." The International Journal of Advanced Manufacturing Technology 15.7 (1999): 470-477.
  • [19] Liu, Jie, and Y. Kevin Chou. "Vortex-tube cooling for tool wear reduction in A390 dry machining." World Tribology Congress III. American Society of Mechanical Engineers Digital Collection, 2005.
  • [20] Liu, Jie, and Y. Kevin Chou. "On temperatures and tool wear in machining hypereutectic Al–Si alloys with vortex-tube cooling." International Journal of Machine Tools and Manufacture 47.3-4 (2007): 635-645.
  • [21] Hu, Jing Shu, et al. Experimental investigation on air cooling of GCr15. In: Key Engineering Materials. Trans Tech Publications Ltd, 2008. p. 197-200.
  • [22] Sun, S., M. Brandt, and M. S. Dargusch. "Machining Ti–6Al–4V alloy with cryogenic compressed air cooling." International Journal of Machine Tools and Manufacture 50.11 (2010): 933-942.
  • [23] Selek, Murat, et al. "Experimental examination of the cooling performance of Ranque-Hilsch vortex tube on the cutting tool nose point of the turret lathe through infrared thermography method." International journal of refrigeration 34.3 (2011): 807-815.
  • [24] An, Q. L., Y. C. Fu, and J. H. Xu. "Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling." International Journal of Machine Tools and Manufacture 51.6 (2011): 549-555.
  • [25] Liu, Nun-Ming, Ko-Ta Chiang, and Chen-Ming Hung. "Modeling and analyzing the effects of air-cooled turning on the machinability of Ti–6Al–4V titanium alloy using the cold air gun coolant system." The International Journal of Advanced Manufacturing Technology 67.5-8 (2013): 1053-1066.
  • [26] Nelge, Balaji, et al. Thermal and Metallographic Investigation for H13A and AISI1050 using Vortex Tube Jet Assisted (VTJA) Machining, 2015.
  • [27] Yüksel, S., and A. Y. H. A. N. Onat. "Investigation of CNC Turning Parameters by Using a Vortex Tube Cooling System." Acta Physica Polonica A 127.4 (2015): 881-885.
  • [28] Balki, Nilesh; Nelge, Balaji; Ingle Asha. Experimental Investigation of Environment Friendly Cooling Methods for Different Machining Conditions. International Journal of Engineering Sciences&Research Technology, 6.11 (2017): 186-191.
  • [29] Ekinović, Sabahudin, et al. "Cold Air Dry Machining, Part 1: Experimental Setup." Journal of Trends in the Development of Machinery and Associated Technology 18.1 (2014): 39-42.
  • [30] Boswell, Brian, and Tilak Chandratilleke. "Air-cooling used for metal cutting." American Jounal of Applied Science 6.2 (2009): 251-262.
  • [31] Singh, GurRaj, and Vishal S. Sharma. "Analyzing machining parameters for commercially puretitanium (Grade 2), cooled using minimum quantity lubrication assisted by a Ranque-Hilsch vortex tube." The International Journal of Advanced Manufacturing Technology 88.9-12 (2017): 2921-2928.
  • [32] Fernandez, David, et al. "Comparison of machining Inconel 718 with conventional and sustainable coolant." MM Science Journal 514 (2014): 506-510.
  • [33] Naumov, Alexander, et al. "System of High-performance Cutting with Enhanced Combined Effect of Cooling and Lubrication Medium Based on Ranque-hilsch Effect." Procedia CIRP 57 (2016): 457-460.
  • [34] Boswell, Brian, and Mohammad Nazrul Islam. "Sustainable cooling method for machining titanium alloy." IOP Conference Series: Materials Science and Engineering. Vol. 114. No. 1. IOP Publishing, 2016.
  • [35] Sanchez, Luiz EA; Scalon, Vicente L.; Abreu, Guilherme GC. Cleaner machining through a toolholder with internal cooling. In: 3rd International Workshop Advances in cleaner production. Brazil. 2011.
  • [36] Onat, A., S. Yüksel, and S. Hartomacıoğlu. "OPTIMIZATION OF CUTTING PARAMETERS OF TURNING OPERATION WITH VORTEX TUBE COOLING SYSTEM USING ARTIFICIAL NEURAL NETWORK METHOD." Machines. Technologies. Materials. 11.9 (2017): 439-442.
  • [37] Taha, Zahari, et al. "Vortex tube air cooling: The effect on surface roughness and power consumption in dry turning." International Journal of Automotive and Mechanical Engineering 8 (2013): 1477.
  • [38] Kostadin, Tihana, Goran Cukor, and S. Jakovljevic. "Analysis of corrosion resistance when turning martensitic stainless steel X20Cr13 under chilled air-cooling." Advances in Production Engineering & Management 12.2 (2017): 105.
  • [39] Gupta, Upendra Sharan, et al. A Proposed Method For Coolıng Of Conventıonal Machınes By Vortex Tube Refrıgeratıon. 2017
  • [40] Pinar, Ahmet Murat, Serhat Filiz, and Bekir Sadık Ünlü. "A comparison of cooling methods in the pocket milling of AA5083-H36 alloy via Taguchi method." The International Journal of Advanced Manufacturing Technology 83.9-12 (2016): 1431-1440.
  • [41] Su, Y., et al. "Refrigerated cooling air cutting of difficult-to-cut materials." International Journal of Machine Tools and Manufacture 47.6 (2007): 927-933.
  • [42] Yalçın, B., A. E. Özgür, and M. Koru. "The effects of various cooling strategies on surface roughness and tool wear during soft materials milling." Materials & Design 30.3 (2009): 896-899.
  • [43] Alsayyed, Basel, Mohammad O. Hamdan, and Saud Aldajah. "Vortex Tube Impact on Cooling Milling Machining." ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2012.
  • [44] Yuan, Song Mei, et al. "Investigation of Machinability in Minimum Quantity Lubrication Milling of GH4169 Aerospace Superalloy." Applied Mechanics and Materials. Vol. 34. Trans Tech Publications Ltd, 2010.
  • [45]Safari, H., et al. "Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti–6Al-4V ELI." Materials and Manufacturing Processes 29.3 (2014): 350-356.
  • [46] Chockalingam, P., and Lee Hong Wee. "Surface roughness and tool wear study on milling of AISI 304 stainless steel using different cooling conditions." International Journal of Engineering and Technology 2.8 (2012): 1386-1391.
  • [47] Boswell, Brian, and Mohammad Nazrul Islam. "The challenge of adopting minimal quantities of lubrication for end milling aluminium." IAENG Transactions on Engineering Technologies. Springer, Dordrecht, 2013. 713-724.
  • [48] Ha, Seok Jae, et al. "Influence of cutting temperature on carbon fiber-reinforced plastic composites in high-speed machining." Journal of Mechanical Science and Technology 31.4 (2017): 1861-1867.
  • [49] Miranda-Giraldo, Michael, et al. "Burr formation and control for polymers micro-milling: A case study with vortex tube cooling." Dyna 84.203 (2017): 150-159.
  • [50] Perri, Gian Marco, et al. "Numerical modelling and analysis of the influence of an air cooling system on a milling machine in virtual environment." The International Journal of Advanced Manufacturing Technology 86.5-8 (2016): 1853-1864.
  • [51] Brandão, Lincoln Cardoso, Reginaldo Teixeira Coelho, and Alessandro Roger Rodrigues. "Experimental and theoretical study of workpiece temperature when end milling hardened steels using (TiAl) N-coated and PcBN-tipped tools." Journal of materials processing Technology 199.1-3 (2008): 234-244.
  • [52] Pınar, Ahmet; Filiz, Serhat. AA5083-H36 Malzemesinin Farklı Soğutma Ortamlarında Frezelenmesinde Çapak Oluşumunun İncelenmesi. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 12.2, 2006.
  • [53] Gisip, Judith, Rado Gazo, and Harold A. Stewart. "Effects of cryogenic treatment and refrigerated air on tool wear when machining medium density fiberboard." Journal of Materials Processing Technology 209.11 (2009): 5117-5122.
  • [54] Khairusshima, MK Nor, and I. S. S. Sharifah. "Study on tool wear during milling CFRP under dry and chilled air machining." Procedia engineering 184 (2017): 506-517.
  • [55] Nevala, Shawn E., et al. "Relative Effects of Cooling and Lubrication in Micro-milling of Aluminum and the Design of Atomization cooling and Lubrication systems." ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2012.
  • [56] Khairusshima, MK Nor, et al. "Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic." Wear 302.1-2 (2013): 1113-1123.
  • [57] Balmer, R. T. "Pressure-driven Ranque-Hilsch temperature separation in liquids." (1988): 161-164.
  • [58] Cong, W. L., et al. "Rotary ultrasonic machining of CFRP using cold air as coolant: feasible regions." Journal of Reinforced Plastics and Composites 30.10 (2011): 899-906.
  • [59] Cong, W. L., et al. "Dry machining of carbon fiber reinforced plastic composite by rotary ultrasonic machining: effects of machining variables." ASME 2011 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers Digital Collection, 2011.
  • [60] Cong, W. L., et al. "Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: using cutting fluid vs. cold air as coolant." Journal of Composite Materials 46.14 (2012): 1745-1753.
  • [61] Patwari, Anayet U., et al. "Thermal investigation of vortex generated green coolant on surface texture for drilling process." Procedia Engineering 105 (2015): 808-813.
  • [62] Lee, Pil-Ho, and Sang Won Lee. "Experimental characterization of micro-grinding process using compressed chilly air." International Journal of Machine Tools and Manufacture 51.3 (2011): 201-209.
  • [63] Choi, H. Z., S. W. Lee, and H. D. Jeong. "A comparison of the cooling effects of compressed cold air and coolant for cylindrical grinding with a CBN wheel." Journal of Materials Processing Technology 111.1-3 (2001): 265-268.
  • [64] Choi, Hon Zong, Suk Woo Lee, and Hae Do Jeong. "The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels." Journal of Materials Processing Technology 127.2 (2002): 155-158.
  • [65] Nguyen, Thai; Zhang, Liang Chi. A note on two cooling methods in surface grinding. In: Advanced Materials Research. Trans Tech Publications Ltd (2011). p. 5-8.
  • [66] Saberi, A., et al. "Improvement of surface grinding process performance of CK45 soft steel by Minimum Quantity Lubrication (MQL) technique using compressed cold air jet from vortex tube." Journal of cleaner production 131 (2016): 728-738.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Duygu Gürkan 0000-0002-2917-3330

Saltuk Alper Yaşar 0000-0002-1050-5403

Gültekin Uzun 0000-0002-6820-8209

İhsan Korkut 0000-0002-5001-4449

Publication Date September 27, 2020
Submission Date May 4, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Gürkan, D., Yaşar, S. A., Uzun, G., Korkut, İ. (2020). VORTEKS SOĞUTMA YÖNTEMİNİN TALAŞLI İMALAT YÖNTEMLERİ VE KESME PARAMETRELERİNE GÖRE İNCELENMESİ. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(3), 730-745. https://doi.org/10.29109/gujsc.727746

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526