Review
BibTex RIS Cite

3B Yazıcıların Kemik Doku İskeleleri Tasarımına Etkisi

Year 2021, Volume: 9 Issue: 1, 1 - 11, 25.03.2021
https://doi.org/10.29109/gujsc.812235

Abstract

Kemik doku iskelelerinin tasarımı gelişen teknoloji ve üretim metodları ile değişmekte ve gelişmektedir. Tasarım ihtiyaçlarından bir tanesi olan dejeneratif hastalıklar sonucu ortaya çıkan osteoporoz nedeni ile kemik dokusu deformasyonu ve kaybı gibi kemik patolojileri, yaşamın kalitesini ve yaşam standartlarını olumsuz etkilemektedir. Bu nedenle kemik rejenerasyonu için üç boyutlu biyoaktif kemik doku iskelelerinin geliştirilmesi, doku mühendisliği alanında büyük önem kazanmıştır. Kemik doku yapısının başarılı bir biçimde taklit edilebilmesinde kemik doku mühendisliği uygulamaları için tasarlanan biyomalzemelerde polimerler ve biyoaktif seramikler kullanılmaktadırlar. Hidroksiapatit (HA) ve biyoaktif camlar ile üretilmiş kemik doku iskeleleri yüksek biyouyumluluğa ve kemik dokusuna bağlanma özelliğine sahip olduğundan dolayı kemik rejenerasyonu için klinik potansiyele sahiptir. Ancak kemik dokusuna benzer gözenekli olarak tasarlanan HA ve biyoaktif cam kemik doku iskelelerin mekanik özellikleri özellikle yük taşıyan uygulamalar için uygun değildir. Mekanik özellikleri iyileştirmek amacıyla seramik, metal, polimer ve cam gibi ikincil fazların ilavesiyle HA bazlı kompozitler üretilmektedir. Kemik iskelesi üretiminde baskı prensipleri ve malzeme seçimine göre stereolitografi, toz tabakalı füzyon, malzeme ekstrüzyonu, binder jetleme ve üç boyutlu (3B) yazıcı ile şekillendirme gibi çeşitli yöntemler uygulanmaktadır. Geleneksel yöntemler; gözenek boyutu, geometrisi ve birbirine bağlılığı üzerinde sınırlı kontrol imkânı sunmaktadır. Ancak 3B yazıcı teknolojileri geliştikçe, kemik mikro mimarisini kontrol edilebilme becerisinde ilerlemeler kaydedilmiştir.

References

  • [1] C. M. Agapakis, Designing synthetic biology, ACS synthetic biology 3(3) (2014) 121-128.
  • [2] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A. H. Rebelo & J. M. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass, Acta Biomaterialia 3(2) (2007) 255-262.
  • [3] A. Bandyopadhyay, S. Bose & S. Das, 3D printing of biomaterials. MRS bulletin, 40(2) (2015) 108-115.
  • [4] P. Batra, & R. Kapoor, A novel method for heart rate measurement using bioimpedance, International Conference on Advances in Recent Technologies in Communication and Computing (2010) 443-445.
  • [5] N. S. Binulal, M. Deepthy, N. Selvamurugan, K. T. Shalumon, S. Suja, U. Mony, ... & S. V. Nair, Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators, Tissue Engineering Part A 16(2) (2010) 393-404.
  • [6] A. Butscher, M. Bohner, S. Hofmann, L. Gauckler & R. Müller, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta biomaterialia, 7(3) (2011) 907-920.
  • [7] C. H. Chang, C. Y. Lin, F. H. Liu, M. H. C. Chen, C. P. Lin, H. N. Ho & Y. S. Liao, 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity, PloS one, 10(11) (2015).
  • [8] H. N. Chia & B. M. Wu, Recent advances in 3D printing of biomaterials, Journal of biological engineering 9(1) 4 (2015).
  • [9] B. A. Dikici, S. Dikici, O. Karaman & H. Oflaz, The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds, Biocybernetics and Biomedical Engineering 37(4) (2017) 733-741.
  • [10] D. G. Disler, T. R. McCauley, C. G. Kelman, M. D. Fuchs, L. M. Ratner, C. R. Wirth, & P. P. Hospodar, Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy, AJR American journal of roentgenology 167(1) (1996) 127-132.
  • [11] A. V. Do, B. Khorsand, S. M. Geary & A. K. Salem, 3D printing of scaffolds for tissue regeneration applications, Advanced healthcare materials 4(12) (2015) 1742-1762.
  • [12] P. Duchenne & G. W. Hastings, Metal and ceramic biomaterials. Vol. II 1984.
  • [13] Q. Fu, E. Saiz & A. P. Tomsia, Bioinspired strong and highly porous glass scaffolds, Advanced functional materials, 21(6) (2011) 1058-1063.
  • [14] S. M. Giannitelli, D. Accoto, M. Trombetta & A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta biomaterialia, 10(2) (2014) 580-594.
  • [15] G. Göller, F. N. Oktar, D. Toykan & E. S. Kayali, The improvement of titanium reinforced hydroxyapatite for biomedical applications. In Key Engineering Materials vol. 240 (2003) 619-622.
  • [16] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen & D. M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical Sciences, Analytical chemistry 86(7) (2014) 3240.
  • [17] L. L. Hench & J. Wilson, Chapter 1. Introduction. An introduction to bioceramics. London (Inglaterra): World Scientific Publishing 1-25, 1993.
  • [18] L. L. Hench & J. Wilson (Eds.), Clinical performance of skeletal prostheses (pp. 33-40). London: Chapman & Hall, 1996.
  • [19] S. J. Hollister, Porous scaffold design for tissue engineering, Nature materials, 4(7) (2005) 518-524.
  • [20] S. J. Hollister, Scaffold design and manufacturing: from concept to clinic, Advanced materials 21(32‐33) (2009) 3330-3342.
  • [21] L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad & M. B. Uday, Recent advances in 3D printing of porous ceramics: A review. Current Opinion, Solid State and Materials Science, 21(6) (2017) 323-347.
  • [22] S. H. Irsen, B. Leukers, C. Höckling, C. Tille & H. Seitz, Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 37(6) (2006) 533-537.
  • [23] A. D. Lantada & P. L. Morgado, Rapid prototyping for biomedical engineering: current capabilities and challenges, Annual review of biomedical engineering, 14 (2012) 73-96.
  • [24] E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino & C. Vitale-Brovarone, Response of human bone marrow stromal cells to a resorbable P2O5–SiO2–CaO–MgO–Na2O–K2O phosphate glass ceramic for tissue engineering applications. Acta biomaterialia, 6(2) (2010) 598-606.
  • [25] B. Leukers, H. Gülkan, S. H. Irsen, S. Milz, C. Tille, M. Schieker & H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine 16(12) (2005) 1121-1124.
  • [26] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma & A. P. Tomsia, Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 23(15) (2003) 2921-2930.
  • [27] S. D. McCullen, Y. Zhu, S. H. Bernacki, R. J. Narayan, B. Pourdeyhimi, R. E. Gorga & E. G. Loboa, Electrospun composite poly (L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells, Biomedical materials, 4(3) (2009) 035002.
  • [28] J. Messelbeck & L. Sutherland, Applying environmental product design to biomedical products research, Environmental health perspectives, 108(suppl 6) (2000) 997-1002.
  • [29] S. V. Murphy & A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology 32(8) (2014) 773.
  • [30] S. Nath, S. Kalmodia & B. Basu, Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites, Journal of Materials Science: Materials in Medicine 21(4) (2010) 1273-1287.
  • [31] M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan & S. Ramakrishna, The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering, Bone, 45(1) (2009) 4-16.
  • [32] H. Oudadesse, E. Dietrich, Y. L. Gal, P. Pellen, B. Bureau, A. A. Mostafa & G. Cathelineau, Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomedical Materials, 6(3) (2011).
  • [33] A. Özyuğuran-ari̇foğlu, Stronsiyum Katkılı Biyocam ve Bakır Nanoparçacıklarından 3D Kompozit Yapı İskelesi Üretimi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji , 6 (3) (2018) 558-569 . DOI: 10.29109/gujsc.
  • [34] J. B. Park & J. D. Bronzino (Eds.), Biomaterials: principles and applications. crc press, 2002.
  • [35] R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. M. Rabiee, P. Khoshakhlagh & M. Tahriri, Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite, Ceramics International 36(1) (2010) 291-297.
  • [36] Rayna, T., Striukova, L., & Darlington, J. (2015). Co-creation and user innovation: The role of online 3D printing platforms. Journal of Engineering and Technology Management, 37, 90-102.
  • [37] M. Sabbatini, F. Boccafoschi, M. Bosetti & M. Cannas, Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses, Journal of biomaterials applications, 28(5) (2014) 708-718.
  • [38] H. Shao, Y. He, J. Fu, D. He, X. Yang, J. Xie, ... & Z. Gou, 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation, Journal of the European Ceramic Society, 36(6) (2016) 1495-1503.
  • [39] B. Thavornyutikarn, P. Tesavibul, K. Sitthiseripratip, N. Chatarapanich, B. Feltis, P. F. Wright & T. W. Turney, Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds, Materials Science and Engineering: C 75 (2017) 1281-1288.
  • [40] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, ... & W. Shu, 3D bioactive composite scaffolds for bone tissue engineering, Bioactive materials, 3(3) (2018) 278-314.
  • [41] C. L. Ventola, Medical applications for 3D printing: current and projected uses, Pharmacy and Therapeutics, 39(10) (2014) 704.
  • [42] F. Wang & M. S. Li, A biomimetic method of hydroxyapatite powders synthesized in simulated body fluid, Key Engineering Materials 297 (2005) 1371-1375.
  • [43] H. Zhou & J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta biomaterialia, 7(7) (2011) 2769-2781.
Year 2021, Volume: 9 Issue: 1, 1 - 11, 25.03.2021
https://doi.org/10.29109/gujsc.812235

Abstract

References

  • [1] C. M. Agapakis, Designing synthetic biology, ACS synthetic biology 3(3) (2014) 121-128.
  • [2] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A. H. Rebelo & J. M. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass, Acta Biomaterialia 3(2) (2007) 255-262.
  • [3] A. Bandyopadhyay, S. Bose & S. Das, 3D printing of biomaterials. MRS bulletin, 40(2) (2015) 108-115.
  • [4] P. Batra, & R. Kapoor, A novel method for heart rate measurement using bioimpedance, International Conference on Advances in Recent Technologies in Communication and Computing (2010) 443-445.
  • [5] N. S. Binulal, M. Deepthy, N. Selvamurugan, K. T. Shalumon, S. Suja, U. Mony, ... & S. V. Nair, Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators, Tissue Engineering Part A 16(2) (2010) 393-404.
  • [6] A. Butscher, M. Bohner, S. Hofmann, L. Gauckler & R. Müller, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta biomaterialia, 7(3) (2011) 907-920.
  • [7] C. H. Chang, C. Y. Lin, F. H. Liu, M. H. C. Chen, C. P. Lin, H. N. Ho & Y. S. Liao, 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity, PloS one, 10(11) (2015).
  • [8] H. N. Chia & B. M. Wu, Recent advances in 3D printing of biomaterials, Journal of biological engineering 9(1) 4 (2015).
  • [9] B. A. Dikici, S. Dikici, O. Karaman & H. Oflaz, The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds, Biocybernetics and Biomedical Engineering 37(4) (2017) 733-741.
  • [10] D. G. Disler, T. R. McCauley, C. G. Kelman, M. D. Fuchs, L. M. Ratner, C. R. Wirth, & P. P. Hospodar, Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy, AJR American journal of roentgenology 167(1) (1996) 127-132.
  • [11] A. V. Do, B. Khorsand, S. M. Geary & A. K. Salem, 3D printing of scaffolds for tissue regeneration applications, Advanced healthcare materials 4(12) (2015) 1742-1762.
  • [12] P. Duchenne & G. W. Hastings, Metal and ceramic biomaterials. Vol. II 1984.
  • [13] Q. Fu, E. Saiz & A. P. Tomsia, Bioinspired strong and highly porous glass scaffolds, Advanced functional materials, 21(6) (2011) 1058-1063.
  • [14] S. M. Giannitelli, D. Accoto, M. Trombetta & A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta biomaterialia, 10(2) (2014) 580-594.
  • [15] G. Göller, F. N. Oktar, D. Toykan & E. S. Kayali, The improvement of titanium reinforced hydroxyapatite for biomedical applications. In Key Engineering Materials vol. 240 (2003) 619-622.
  • [16] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen & D. M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical Sciences, Analytical chemistry 86(7) (2014) 3240.
  • [17] L. L. Hench & J. Wilson, Chapter 1. Introduction. An introduction to bioceramics. London (Inglaterra): World Scientific Publishing 1-25, 1993.
  • [18] L. L. Hench & J. Wilson (Eds.), Clinical performance of skeletal prostheses (pp. 33-40). London: Chapman & Hall, 1996.
  • [19] S. J. Hollister, Porous scaffold design for tissue engineering, Nature materials, 4(7) (2005) 518-524.
  • [20] S. J. Hollister, Scaffold design and manufacturing: from concept to clinic, Advanced materials 21(32‐33) (2009) 3330-3342.
  • [21] L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad & M. B. Uday, Recent advances in 3D printing of porous ceramics: A review. Current Opinion, Solid State and Materials Science, 21(6) (2017) 323-347.
  • [22] S. H. Irsen, B. Leukers, C. Höckling, C. Tille & H. Seitz, Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 37(6) (2006) 533-537.
  • [23] A. D. Lantada & P. L. Morgado, Rapid prototyping for biomedical engineering: current capabilities and challenges, Annual review of biomedical engineering, 14 (2012) 73-96.
  • [24] E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino & C. Vitale-Brovarone, Response of human bone marrow stromal cells to a resorbable P2O5–SiO2–CaO–MgO–Na2O–K2O phosphate glass ceramic for tissue engineering applications. Acta biomaterialia, 6(2) (2010) 598-606.
  • [25] B. Leukers, H. Gülkan, S. H. Irsen, S. Milz, C. Tille, M. Schieker & H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine 16(12) (2005) 1121-1124.
  • [26] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma & A. P. Tomsia, Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 23(15) (2003) 2921-2930.
  • [27] S. D. McCullen, Y. Zhu, S. H. Bernacki, R. J. Narayan, B. Pourdeyhimi, R. E. Gorga & E. G. Loboa, Electrospun composite poly (L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells, Biomedical materials, 4(3) (2009) 035002.
  • [28] J. Messelbeck & L. Sutherland, Applying environmental product design to biomedical products research, Environmental health perspectives, 108(suppl 6) (2000) 997-1002.
  • [29] S. V. Murphy & A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology 32(8) (2014) 773.
  • [30] S. Nath, S. Kalmodia & B. Basu, Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites, Journal of Materials Science: Materials in Medicine 21(4) (2010) 1273-1287.
  • [31] M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan & S. Ramakrishna, The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering, Bone, 45(1) (2009) 4-16.
  • [32] H. Oudadesse, E. Dietrich, Y. L. Gal, P. Pellen, B. Bureau, A. A. Mostafa & G. Cathelineau, Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomedical Materials, 6(3) (2011).
  • [33] A. Özyuğuran-ari̇foğlu, Stronsiyum Katkılı Biyocam ve Bakır Nanoparçacıklarından 3D Kompozit Yapı İskelesi Üretimi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji , 6 (3) (2018) 558-569 . DOI: 10.29109/gujsc.
  • [34] J. B. Park & J. D. Bronzino (Eds.), Biomaterials: principles and applications. crc press, 2002.
  • [35] R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. M. Rabiee, P. Khoshakhlagh & M. Tahriri, Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite, Ceramics International 36(1) (2010) 291-297.
  • [36] Rayna, T., Striukova, L., & Darlington, J. (2015). Co-creation and user innovation: The role of online 3D printing platforms. Journal of Engineering and Technology Management, 37, 90-102.
  • [37] M. Sabbatini, F. Boccafoschi, M. Bosetti & M. Cannas, Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses, Journal of biomaterials applications, 28(5) (2014) 708-718.
  • [38] H. Shao, Y. He, J. Fu, D. He, X. Yang, J. Xie, ... & Z. Gou, 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation, Journal of the European Ceramic Society, 36(6) (2016) 1495-1503.
  • [39] B. Thavornyutikarn, P. Tesavibul, K. Sitthiseripratip, N. Chatarapanich, B. Feltis, P. F. Wright & T. W. Turney, Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds, Materials Science and Engineering: C 75 (2017) 1281-1288.
  • [40] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, ... & W. Shu, 3D bioactive composite scaffolds for bone tissue engineering, Bioactive materials, 3(3) (2018) 278-314.
  • [41] C. L. Ventola, Medical applications for 3D printing: current and projected uses, Pharmacy and Therapeutics, 39(10) (2014) 704.
  • [42] F. Wang & M. S. Li, A biomimetic method of hydroxyapatite powders synthesized in simulated body fluid, Key Engineering Materials 297 (2005) 1371-1375.
  • [43] H. Zhou & J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta biomaterialia, 7(7) (2011) 2769-2781.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Deniz Ekmekçioğlu 0000-0003-2772-5784

Ceren Pekşen 0000-0002-3378-4804

Publication Date March 25, 2021
Submission Date October 18, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Ekmekçioğlu, D., & Pekşen, C. (2021). 3B Yazıcıların Kemik Doku İskeleleri Tasarımına Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(1), 1-11. https://doi.org/10.29109/gujsc.812235

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526