Research Article
BibTex RIS Cite

Eksenel Akı Konseptindeki Senkron Relüktans ve İndüksiyon Motor'un Verim ve Performans Karşılaştırması

Year 2021, Volume: 9 Issue: 2, 297 - 316, 27.06.2021
https://doi.org/10.29109/gujsc.910521

Abstract

Bu eserde, rotorunda çoklu sayıda bariyere sahip Eksenel Akılı Senkron Relüktans Motor (EA-SRM) tasarımı yapılarak, aynı stator yapısı ve boyutlara sahip Eksenel Akılı İndüksiyon Motor (EA-IM) ile performans karşılaştırması yapmak amaçlanmıştır. Eşit bir karşılaştırma olabilmesi için motor ölçüleri ve stator yapısı aynı seçilmiş, sadece rotor değişimi yapılmıştır. Tasarımların ön çalışmasında motor ölçüleri analitik olarak hesaplanmış ve 3D Sonlu Elemanlar Yöntemi (SEY) ile modellenmiştir. EA-SRM performansını etkileyen en önemli faktör olan çıkıntı oranını optimal düzeye getirmek için Genetik Algoritma (GE) tabanlı optimizasyon yapılmış ve rotor geometrisi değiştirilmiştir. Böylece karşılaştırma için uygun model oluşturulmuştur. Tork, verim, giriş gücü, güç faktörü, toplam kayıplar ve akım başına tork parametreleri analiz edilmiştir. Önerilen karşılaştırma metodu ile EA-SRM aynı güç değerindeki (2.2 kW) EA-IM den daha yüksek verim, güç, amper başına tork ve daha düşük kayıplar elde edilmiştir. EA-SRM rotorunda sincap kafesi bulunmaması sebebiyle bakır kayıplarının olmaması ve mıknatıssız yapısıyla maliyet-bakım masraflarının düşüklüğü, yüksek verim ve tork istenilen uygulamalarda iyi bir alternatif olacaktır.

Supporting Institution

Tokat Gaziosmanpaşa Üniversitesi

Project Number

2020/41

Thanks

Bu çalışma, Tokat Gaziosmanpaşa Üniversitesi Bilimsel Araştırma Projeleri Birimi, 2020/41 numaralı proje ile desteklenmiştir.

References

  • [1] Almeida, A.T., Ferreira, F., & Duarte, A.Q. (2014). Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Transactions on Industry Applications, 50, 1274-1285.
  • [2] Huang, H., Hu, Y., Xiao, Y., & Lyu, H. (2015). Research of Parameters and Antidemagnetization of Rare-Earth-Less Permanent Magnet-Assisted Synchronous Reluctance Motor. IEEE Transactions on Magnetics, 51, 1-4.
  • [3] IEA, Uluslararası Enerji Ajansı, 2020 Raporu, https://www.iea.org/reports/global-energy-review-2020/electricity#electricity-supply
  • [4] Mohanarajah, T., Rizk, J., Nagrial, M., & Hellany, A. (2018). Finite Element Analysis and Design Methodology for High-Efficiency Synchronous Reluctance Motors. Electric Power Components and Systems, 46, 1478-1493.
  • [5] Ozcelik, N., Dogru, U.E., Imeryuz, M., & Ergene, L.T. (2019). Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison. Energies, 12, 1-20.
  • [6] Villan, M., Tursini, M., Popescu, M., Fabri, G., Credo, A., & Leonardo, L.D. (2018). Experimental Comparison Between Induction and Synchronous Reluctance Motor-Drives. 2018 XIII International Conference on Electrical Machines (ICEM), 1188-1194.
  • [7] Boglietti, A., & Pastorelli, M. (2008). Induction and synchronous reluctance motors comparison. 2008 34th Annual Conference of IEEE Industrial Electronics, 2041-2044.
  • [8] Oner, Y., Ersoz, M., & Bingöl, O. (2016). Akı Bariyerli TLA Tipi Senkron Relüktans Motor Tasarımı ve Optimizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 31, sayı. 4, ss. 0-0, Ara. 2016, doi:10.17341/gazimmfd.278449.
  • [9] Nakahara, A., Deguchi, K., Kikuchi, S., & Enomoto, Y. (2014). Comparative electrical design of radial- and axial-flux permanent magnet synchronous machines under space limitation. 2014 International Conference on Electrical Machines (ICEM), 422-428.
  • [10] Ashari, M., Suryoatmojo, H., Riawan, D.C., Mardiyanto, R., Fahmi, D., Hidayat, S., & Adam, K.B. (2015). Design and Implementation of Axial Flux Induction Motor Single Stator - Single Rotor for Electric Vehicle Application.
  • [11] Babu, V.R., Soni, M., & Manjeera, C. (2012). Modeling of axial flux induction machine with sinusoidal winding distribution. 2012 Annual IEEE India Conference (INDICON), 481-486.
  • [12] Kalo, A.K., Dwivedi, A., Srivastava, R., & Banchhor, D.K. (2015). Experiences with Axial-Flux induction motor. 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), 1-6.
  • [13] Banchhor, D.K., & Dhabale, A. (2018). Design, Modeling, and Analysis of Dual Rotor Axial Flux Induction Motor. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6.
  • [14] Benoudjit, A., & Said, N.N. (1998). New dual-airgap axial and radial-flux induction motor for on wheel drive electric propulsion systems. POWERCON '98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), 1, 615-619 vol.1.
  • [15] Dwivedi, A., Gupta, S., Singh, S., & Srivastava, R. (2015). Experiences with axial flux sheet rotor induction motor. 2015 IEEE IAS Joint Industrial and Commercial Power Systems / Petroleum and Chemical Industry Conference (ICPSPCIC), 115-118.
  • [16] Hu, Z., Huang, W., Hong, C., & Bu, F. (2018). Control Strategy of Self-Bearing Dual Stator Solid Rotor Axial Flux Induction Motor for Flywheel Energy Storage. 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1513-1517.
  • [17] Nobahari, A., Darabi, A., & Hassannia, A. (2017). Axial flux induction motor, design and evaluation of steady state modeling using equivalent circuit. 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 353-358.
  • [18] Profumo, F., Zhang, Z., & Tenconi, A. (1997). Axial flux machines drives: a new viable solution for electric cars. IEEE Trans. Ind. Electron., 44, 39-45.
  • [19] Nasiri-Gheidari, Z., & Lesani, H. (2012). A Survey on Axial Flux Induction Motors. Przegląd Elektrotechniczny, 300-305.
  • [20] Zhang, C., Tseng, K., & Nguyen, T.D. (2010). Analysis and comparison of axial flux PM synchronous motor and induction motor. 2010 Conference Proceedings IPEC, 572-577.
  • [21] Igelspacher, J., Fluegel, S., & Herzog, H. (2011). Analytic examination of coupled axial-flux induction machines with reduced yoke. 2011 1st International Electric Drives Production Conference, 153-158.
  • [22] Bianchi, N., & Jahns, T. (2016). The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors: Tutorial Course Notes.
  • [23] Pop, A., Piglesan, F.P., Martis, R., Vintiloiu, I., & Martis, C. (2018). First Insights on the Electromagnetic Design of Axial-Flux Synchronous-Reluctance Maschine. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 5702-5709.
  • [24] Akiki, P., Hage-Hassan, M., Bensetti, M., Vannier, J., Prieto, D., & McClelland, M. (2018). Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor. 2018 XIII International Conference on Electrical Machines (ICEM), 583-589.
  • [25] Tarek, M.T., & Sozer, Y. (2019). Design of a Novel Axial Flux Permanent Magnet Assisted Synchronous Reluctance Motor. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 3004-3009.
  • [26] Gercekcioglu, H.S., & Akar, M. (2021). Optimal rotor design of novel axial flux synchronous reluctance motor and validation. Int Trans Electr Energ Syst. 2021; e12866.
  • [27] Chlebiš, P., Havel, A., & Vaculík, P. (2012). The Design of HEV Drive Unit with an Axial Flux Rotary Converter.
  • [28] Sahin, F., Tuckey, A.M., & Vandenput, A. (2001). Design, development and testing of a high-speed axial-flux permanent-magnet machine. Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 3, 1640-1647 vol.3.
  • [29] Taghavi, S., & Pillay, P. (2014). A comparative study of synchronous reluctance machine performance with different pole numbers for automotive applications. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 3812-3818.
  • [30] Shi, J., Chai, F., Li, X., & Cheng, S. (2011). Study of the number of slots/pole combinations for low speed high torque permanent magnet synchronous motors. 2011 International Conference on Electrical Machines and Systems, 1-3.
  • [31] Aghazadeh, H., Afjei, E., & Siadatan, A. (2019). Sizing and detailed design procedure of external rotor synchronous reluctance machine. Iet Electric Power Applications, 13, 1105-1113.
  • [32] Sawhney, A. K., & Chakrabarti, A. (2010). Course in electrical machine design. Delhi: Dhanpat Rai.
  • [33] Boldea, I., & Nasar, S. A. (2010). The induction machines design handbook. Boca Raton: CRC Press/Taylor & Francis.
  • [34] Gürdal, O. (2001). Elektrik makinalarının tasarımı. İstanbul: Atlas Yayın Dağıtım.
  • [35] Joksimović, G., Melecio, J.I., Tuohy, P.M., & Djurović, S. (2020). Towards the optimal ‘slot combination’ for steady-state torque ripple minimization: an eight-pole cage rotor induction motor case study. Electrical Engineering, 102, 293-308.
  • [36] Gundogdu, T., Zhu, Z., & Mipo, J. (2017). Influence of rotor slot number on rotor bar current waveform and performance in induction machines. 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6.
  • [37] Kamper, M. J., Van der Merwe, F. S., & Williamson, S. (1996). Direct finite element design optimisation of the cageless reluctance synchronous machine. IEEE Transactions on Energy Conversion, 11(3), 547-555.
  • [38] Ibrahim, M. N. F., Sergeant, P., & Rashad, E. (2016). Simple design approach for low torque ripple and high output torque synchronous reluctance motors. Energies, 9(11), 942.
  • [39] Moghaddam, R. R. (2007). Synchronous reluctance machine (SynRM) design. KTH Electrical Engineering.

Efficiency and Performance Comparison Between Synchronous Reluctance and Induction Motor in Axial Flux Concept

Year 2021, Volume: 9 Issue: 2, 297 - 316, 27.06.2021
https://doi.org/10.29109/gujsc.910521

Abstract

In this study, the Axial Flux Synchronous Reluctance Motor (AF-SynRM) with multiple barriers in its rotor is designed and it is aimed to compare the performance with the Axial Flux Induction Motor (AF-IM) with the same stator structure and dimensions. For an equal comparison, the motor dimensions and stator structure are chosen the same, only the rotor is changed. In the preliminary study of the designs, machine dimensions are calculated analytically and modeled with the 3D Finite Element Method (FEM). To optimize the saliency ratio, which is the most important factor affecting AF-SynRM performance, Genetic Algorithm (GA) based optimization is performed and the rotor geometry is changed. Thus, a suitable model is created for comparison. Torque, efficiency, input power, power factor, total loses and torque per amper parameters are analyzed. With the proposed comparison method, AF-SynRM obtains higher efficiency, power, torque per ampere and lower losses than AF-IM at the same power rating (2.2 kW). The AF-SynRM rotor will be a good alternative in applications where high efficiency and torque are required, with low cost-maintenance costs due to the absence of a squirrel cage and its structure without magnet.

Project Number

2020/41

References

  • [1] Almeida, A.T., Ferreira, F., & Duarte, A.Q. (2014). Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Transactions on Industry Applications, 50, 1274-1285.
  • [2] Huang, H., Hu, Y., Xiao, Y., & Lyu, H. (2015). Research of Parameters and Antidemagnetization of Rare-Earth-Less Permanent Magnet-Assisted Synchronous Reluctance Motor. IEEE Transactions on Magnetics, 51, 1-4.
  • [3] IEA, Uluslararası Enerji Ajansı, 2020 Raporu, https://www.iea.org/reports/global-energy-review-2020/electricity#electricity-supply
  • [4] Mohanarajah, T., Rizk, J., Nagrial, M., & Hellany, A. (2018). Finite Element Analysis and Design Methodology for High-Efficiency Synchronous Reluctance Motors. Electric Power Components and Systems, 46, 1478-1493.
  • [5] Ozcelik, N., Dogru, U.E., Imeryuz, M., & Ergene, L.T. (2019). Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison. Energies, 12, 1-20.
  • [6] Villan, M., Tursini, M., Popescu, M., Fabri, G., Credo, A., & Leonardo, L.D. (2018). Experimental Comparison Between Induction and Synchronous Reluctance Motor-Drives. 2018 XIII International Conference on Electrical Machines (ICEM), 1188-1194.
  • [7] Boglietti, A., & Pastorelli, M. (2008). Induction and synchronous reluctance motors comparison. 2008 34th Annual Conference of IEEE Industrial Electronics, 2041-2044.
  • [8] Oner, Y., Ersoz, M., & Bingöl, O. (2016). Akı Bariyerli TLA Tipi Senkron Relüktans Motor Tasarımı ve Optimizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 31, sayı. 4, ss. 0-0, Ara. 2016, doi:10.17341/gazimmfd.278449.
  • [9] Nakahara, A., Deguchi, K., Kikuchi, S., & Enomoto, Y. (2014). Comparative electrical design of radial- and axial-flux permanent magnet synchronous machines under space limitation. 2014 International Conference on Electrical Machines (ICEM), 422-428.
  • [10] Ashari, M., Suryoatmojo, H., Riawan, D.C., Mardiyanto, R., Fahmi, D., Hidayat, S., & Adam, K.B. (2015). Design and Implementation of Axial Flux Induction Motor Single Stator - Single Rotor for Electric Vehicle Application.
  • [11] Babu, V.R., Soni, M., & Manjeera, C. (2012). Modeling of axial flux induction machine with sinusoidal winding distribution. 2012 Annual IEEE India Conference (INDICON), 481-486.
  • [12] Kalo, A.K., Dwivedi, A., Srivastava, R., & Banchhor, D.K. (2015). Experiences with Axial-Flux induction motor. 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), 1-6.
  • [13] Banchhor, D.K., & Dhabale, A. (2018). Design, Modeling, and Analysis of Dual Rotor Axial Flux Induction Motor. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6.
  • [14] Benoudjit, A., & Said, N.N. (1998). New dual-airgap axial and radial-flux induction motor for on wheel drive electric propulsion systems. POWERCON '98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), 1, 615-619 vol.1.
  • [15] Dwivedi, A., Gupta, S., Singh, S., & Srivastava, R. (2015). Experiences with axial flux sheet rotor induction motor. 2015 IEEE IAS Joint Industrial and Commercial Power Systems / Petroleum and Chemical Industry Conference (ICPSPCIC), 115-118.
  • [16] Hu, Z., Huang, W., Hong, C., & Bu, F. (2018). Control Strategy of Self-Bearing Dual Stator Solid Rotor Axial Flux Induction Motor for Flywheel Energy Storage. 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1513-1517.
  • [17] Nobahari, A., Darabi, A., & Hassannia, A. (2017). Axial flux induction motor, design and evaluation of steady state modeling using equivalent circuit. 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 353-358.
  • [18] Profumo, F., Zhang, Z., & Tenconi, A. (1997). Axial flux machines drives: a new viable solution for electric cars. IEEE Trans. Ind. Electron., 44, 39-45.
  • [19] Nasiri-Gheidari, Z., & Lesani, H. (2012). A Survey on Axial Flux Induction Motors. Przegląd Elektrotechniczny, 300-305.
  • [20] Zhang, C., Tseng, K., & Nguyen, T.D. (2010). Analysis and comparison of axial flux PM synchronous motor and induction motor. 2010 Conference Proceedings IPEC, 572-577.
  • [21] Igelspacher, J., Fluegel, S., & Herzog, H. (2011). Analytic examination of coupled axial-flux induction machines with reduced yoke. 2011 1st International Electric Drives Production Conference, 153-158.
  • [22] Bianchi, N., & Jahns, T. (2016). The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors: Tutorial Course Notes.
  • [23] Pop, A., Piglesan, F.P., Martis, R., Vintiloiu, I., & Martis, C. (2018). First Insights on the Electromagnetic Design of Axial-Flux Synchronous-Reluctance Maschine. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 5702-5709.
  • [24] Akiki, P., Hage-Hassan, M., Bensetti, M., Vannier, J., Prieto, D., & McClelland, M. (2018). Axial Ferrite-Magnet-Assisted Synchronous Reluctance Motor. 2018 XIII International Conference on Electrical Machines (ICEM), 583-589.
  • [25] Tarek, M.T., & Sozer, Y. (2019). Design of a Novel Axial Flux Permanent Magnet Assisted Synchronous Reluctance Motor. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 3004-3009.
  • [26] Gercekcioglu, H.S., & Akar, M. (2021). Optimal rotor design of novel axial flux synchronous reluctance motor and validation. Int Trans Electr Energ Syst. 2021; e12866.
  • [27] Chlebiš, P., Havel, A., & Vaculík, P. (2012). The Design of HEV Drive Unit with an Axial Flux Rotary Converter.
  • [28] Sahin, F., Tuckey, A.M., & Vandenput, A. (2001). Design, development and testing of a high-speed axial-flux permanent-magnet machine. Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 3, 1640-1647 vol.3.
  • [29] Taghavi, S., & Pillay, P. (2014). A comparative study of synchronous reluctance machine performance with different pole numbers for automotive applications. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 3812-3818.
  • [30] Shi, J., Chai, F., Li, X., & Cheng, S. (2011). Study of the number of slots/pole combinations for low speed high torque permanent magnet synchronous motors. 2011 International Conference on Electrical Machines and Systems, 1-3.
  • [31] Aghazadeh, H., Afjei, E., & Siadatan, A. (2019). Sizing and detailed design procedure of external rotor synchronous reluctance machine. Iet Electric Power Applications, 13, 1105-1113.
  • [32] Sawhney, A. K., & Chakrabarti, A. (2010). Course in electrical machine design. Delhi: Dhanpat Rai.
  • [33] Boldea, I., & Nasar, S. A. (2010). The induction machines design handbook. Boca Raton: CRC Press/Taylor & Francis.
  • [34] Gürdal, O. (2001). Elektrik makinalarının tasarımı. İstanbul: Atlas Yayın Dağıtım.
  • [35] Joksimović, G., Melecio, J.I., Tuohy, P.M., & Djurović, S. (2020). Towards the optimal ‘slot combination’ for steady-state torque ripple minimization: an eight-pole cage rotor induction motor case study. Electrical Engineering, 102, 293-308.
  • [36] Gundogdu, T., Zhu, Z., & Mipo, J. (2017). Influence of rotor slot number on rotor bar current waveform and performance in induction machines. 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6.
  • [37] Kamper, M. J., Van der Merwe, F. S., & Williamson, S. (1996). Direct finite element design optimisation of the cageless reluctance synchronous machine. IEEE Transactions on Energy Conversion, 11(3), 547-555.
  • [38] Ibrahim, M. N. F., Sergeant, P., & Rashad, E. (2016). Simple design approach for low torque ripple and high output torque synchronous reluctance motors. Energies, 9(11), 942.
  • [39] Moghaddam, R. R. (2007). Synchronous reluctance machine (SynRM) design. KTH Electrical Engineering.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Harun Serhat Gerçekcioğlu 0000-0003-0058-7529

Mehmet Akar 0000-0003-0164-1451

Project Number 2020/41
Publication Date June 27, 2021
Submission Date April 6, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

APA Gerçekcioğlu, H. S., & Akar, M. (2021). Efficiency and Performance Comparison Between Synchronous Reluctance and Induction Motor in Axial Flux Concept. Gazi University Journal of Science Part C: Design and Technology, 9(2), 297-316. https://doi.org/10.29109/gujsc.910521

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526