Review
BibTex RIS Cite

Biyomedikal Alaşımların Yüzey İşlemlerinde Güncel Yaklaşımlar; Lazer İşlemleri

Year 2021, Volume: 9 Issue: 3, 413 - 431, 30.09.2021
https://doi.org/10.29109/gujsc.934338

Abstract

Günümüzde büyük gelişmelerin gerçekleştiği bir bilim dalı da biyomalzeme bilimidir. Biyomalzemeler, hastalıklı veya hasar görmüş organ ya da dokuların yerine kullanılabilen doğal veya yapay malzemeler olup, bazı durumlarda vücut fonksiyonlarını düzeltmek veya organların fonksiyonelliğini artırmak gibi amaçlarla da kullanılabilen, canlı bir sistemin parçası yerine geçen veya canlı doku ile temas halinde çalışması gereken malzemelerdir. Bilinen malzeme türleri olan metalik, seramik, polimerik ve kompozit malzemerin her birinin biyomalzeme olarak kullanımı mevcuttur. Bunların arasında özellikle mekanik özellikleri açısından öne çıkan metalik biyomalzemeler ve biyomedikal alaşımların uygulama alanları arasında ortopedik implantlar, kırık tedavi vidaları, diş telleri ve dental implantlar gibi pek çok uygulama mevcuttur. Tüm biyomalzemeler gibi, biyomedikal alaşımların da başarısını belirleyen en önemli faktör biyouyumluluklarıdır. Biyolojik sistemlerle ilk temaslarının malzeme yüzeyinde gerçekleşmesi sebebiyle, biyomedikal alaşımların biyouyumluluklarının geliştirilmesinde yüzey işlemleri uygulanması yaygın olarak kullanılan yöntemlerdir. Bu yöntemler arasında lazer yüzey yapılandırma yöntemi biyomedikal endüstrisinde malzemelerin yüzey özelliklerini modifiye etmek için gelecek vadeden, kontaminasyonsuz, temassız ve çevre dostu bir yüzey işlem tekniğidir. Nanosaniye ve femtosaniye lazer ışınlama uygulamaları bu noktada karşımıza çıkmakta ve farklı biyomalzeme alaşımlarının yüzey özelliklerini değiştirmeye olanak tanımaktadır. Bu makale kapsamında nanosaniye ve femtosaniye lazer ışınlamaları etkisiyle biyomalzemelerin yüzey özelliklerindeki değişimler, farklı lazer teknikleri ile yapılan uygulamalar incelenmiş ve sonuçları derlenmiştir.

References

  • [1] Bauer S., Schmuki P., Mark K., Park J., Engineering biocompatible implant surfaces Part I: Materials and surfaces, Progress in Materials Science, 58:3 (2013) 261-326.
  • [2] Hin, TS. Introduction to biomatrerials engineering and processing-an overview. Engineering Materials for Biomedical Applications, (2004) 1-16.
  • [3] Kalelioğlu D. (2015). Kemik Doku İmplant Malzemeleri: Osseointegrasyon ve Antibakteriyel Etkinlik, Yüksek Lisans Tezi Hacettepe Üniversitesi Biyomühendislik Anabilim Dalı, Ankara.
  • [4] Liu, X., Chu, P. K., Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47:3-4 (2004) 49-121.
  • [5] Ayhan, H. Biyomalzemeler. Bilim ve Teknik Dergisi, (2002) 2-11.
  • [6] Demirkıran, H. (2003). Biyocam Takviyeli Hidroksiapatit Kompozitlerinin Geliştirilmesi. Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • [7] Pekşen C., Doğan A. İmplant dayanımı. Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi, 10:2 (2011) 122-128.
  • [8] Geetha, M., Singh, A., Asokamani, R., Gogia, A. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science, 54:3 (2009) 397-425.
  • [9] Mavrogenis, A., Dimitriou, R., Parvizi, J., Babis, G. Biology of implant osseointegration. J Musculoskelet Neuronal Interact, 9:2 (2009) 61-71.
  • [10] Uzun D, Keyf, P. İmplantların yüzey özellikleri ve osseointegrasyon. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2 (2007) 43-50.
  • [11] Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid‐etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 40:1 (1998) 1-11.
  • [12] Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw‐shaped implants each prepared with two surface roughnesses. Clinical oral implants research, 9:1 (1998) 11-19.
  • [13] Wheeler S. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatitecoated cylinder implants. Int J OralMaxillofac Implants, 11 (1996) 340-50.
  • [14] Tinsley D, Watson C, Russell J. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clinical Oral Implants Research, 12:2 (2001) 159-166.
  • [15] Becker W, Becker BE, Ricci A, Bahat O, Rosenberg E, Rose LF.A prospective multicenter clinical trial comparing one‐and two‐stage titanium screw‐shaped fixtures with one‐stage plasma‐sprayed solid‐screw fixtures. Clinical implant dentistry and related research, 2:3 (2000) 159-165.
  • [16] Albrektsson T, Wennerberg A. The impact of oral implants-past and future, 1966-2042. Journal of Canadian Dental Association 71:5 (2005) 327.
  • [17] Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. Journal of Biomechanics, 32:8 (1999) 829-836.
  • [18] Wennerberg A, Albrektsson T, Albrektsson B, Krol JJ. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials, 17:1 (1996) 15-22.
  • [19] Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Advances in dental research, 13:1 (1999) 21-26.
  • [20] Ozcan M, Hammerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials, 5:9 (2012) 1528-1545.
  • [21] Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews in Biomedical Engineering, 28:5-6 (2000).
  • [22] Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23:7 (2007) 844-854.
  • [23] Aparicio C,Gil FJ, Fonseca C, BarbosaM, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 24:2 (2003) 263-273.
  • [24] Massaro C, Rotolo F, De Riccardis F, Milella E, Napoli A, Wieland M. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 13:6 (2002) 535-548.
  • [25] Ban S, Iwaya Y, Kono H, Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dental materials, 22:12 (2006) 1115-1120.
  • [26] Novaes Jr AB, Papalexiou V, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites: a histomorphometric study in dogs. Clinical Oral Implants Research, 15:1 (2004) 34-43.
  • [27] Papalexiou V, Novaes Jr AB, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites: A confocal laser scanning microscopic study. Clinical oral implants research, 15:1 (2004) 44-53.
  • [28] Yokoyama K, Ichikawa T,Murakami H,Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials, 23:12 (2002) 2459-2465.
  • [29] Dalkız M. Dental implantlarda farklı yüzey özelliklerinin osseointegrasyona etkisi. In: Dalkız M, editör. Pratik Diş Hekimliği İmplantolojisi. 1. Baskı. İstanbul: Vestiyer Yayın Gubu, (2009) 133-41.
  • [30] Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clinical Oral Implants Research, 13:3 (2002) 252-259.
  • [31] Gaggl A, Schultes G, Müller WD, Karcher H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials, 21:10 (2000) 1067-1073.
  • [32] Berardi D, Colagiovanni M, Scoccia A, Raffaelli L, Manicone PF, Perfetti G. Evaluation of a new laser surface implant: scanning electron microscopy/energy dispersive X-ray and X-ray photoelectron spectroscopy analyses. Journal of biological regulators and homeostatic agents, 22:3 (2008) 161-167.
  • [33] Shinonaga, T., Kinoshita, S., Okamoto, Y., Tsukamoto, M., Okada, A. Formation of periodic nanostructures with femtosecond laser for creation of new functional biomaterials. Procedia, 42 (2016) 57-61.
  • [34] Liang, C., Wang, H., Yang, J., Li, B., Yang, Y., Li, H. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser. Applied surface science, 261 (2012) 337-342.
  • [35] Raimbault, O., Benayoun, S., Anselme, K., Mauclair, C., Bourgade, T., Kietzig, A. M., Donnet, C. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Materials Science and Engineering, 69 (2016) 311-320.
  • [36] Hu, G., Guan, K., Lu, L., Zhang, J., Lu, N., Guan, Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering, 4:6 (2018) 822-830.
  • [37] De Lara, L. R., Jagdheesh, R., Ocaña, J. L. Corrosion resistance of laser patterned ultrahydrophobic aluminium surface. Materials Letters, 184 (2016) 100-103.
  • [38] Razi, S., Madanipour, K., & Mollabashi, M. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures. Optics & Laser Technology, 80 (2016) 237-246.
  • [39] Celen, S. Lazerle Mikro-İmalatta Q-Anahtarlama. Gazi University Journal of Science Part C: Design and Technology 3 (2015 ) 367-374.

Current Approaches in Surface Processing of Biomedical Alloys; Laser Processes

Year 2021, Volume: 9 Issue: 3, 413 - 431, 30.09.2021
https://doi.org/10.29109/gujsc.934338

Abstract

One of the branches of science where great developments are taking place today is biomaterials. Biomaterials are natural or artificial materials that can be used for the replacement of diseased or damaged organs or tissues, and in some cases they can be used for purposes such as correcting body functions or increasing the functionality of organs, replacing a living system or working in contact with living tissue. The known material types that are metallic, ceramic, polymeric and composite materials are each used as biomaterials. Among these, metallic biomaterials which are especially prominent in terms of their mechanical properties are widely used in many biomedical applications such as orthopedic implants, fracture treatment screws, braces and dental implants among the application areas of metallic biomaterials and biomedical alloys. As in all biomaterials, the most important factor determining the success of biomedical alloys is their biocompatibility. Since their first interaction with the biological systems occurs on the material surface, surface treatments are commonly used methods for improving the biocompatibility of biomedical alloys. Among these methods, the laser surface structuring method is a promising, contamination-free, non-contact and environmentally friendly surface treatment technique to modify the surface properties of materials in the biomedical industry. Nanosecond and femtosecond laser irradiation applications emerge at this point and allow to change the surface properties of different biomaterial alloys. Within the scope of this article, the changes in the surface properties of biomaterials with the effect of nanosecond and femtosecond laser irradiations, applications with different laser techniques were examined and the results were compiled.

References

  • [1] Bauer S., Schmuki P., Mark K., Park J., Engineering biocompatible implant surfaces Part I: Materials and surfaces, Progress in Materials Science, 58:3 (2013) 261-326.
  • [2] Hin, TS. Introduction to biomatrerials engineering and processing-an overview. Engineering Materials for Biomedical Applications, (2004) 1-16.
  • [3] Kalelioğlu D. (2015). Kemik Doku İmplant Malzemeleri: Osseointegrasyon ve Antibakteriyel Etkinlik, Yüksek Lisans Tezi Hacettepe Üniversitesi Biyomühendislik Anabilim Dalı, Ankara.
  • [4] Liu, X., Chu, P. K., Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47:3-4 (2004) 49-121.
  • [5] Ayhan, H. Biyomalzemeler. Bilim ve Teknik Dergisi, (2002) 2-11.
  • [6] Demirkıran, H. (2003). Biyocam Takviyeli Hidroksiapatit Kompozitlerinin Geliştirilmesi. Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • [7] Pekşen C., Doğan A. İmplant dayanımı. Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi, 10:2 (2011) 122-128.
  • [8] Geetha, M., Singh, A., Asokamani, R., Gogia, A. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science, 54:3 (2009) 397-425.
  • [9] Mavrogenis, A., Dimitriou, R., Parvizi, J., Babis, G. Biology of implant osseointegration. J Musculoskelet Neuronal Interact, 9:2 (2009) 61-71.
  • [10] Uzun D, Keyf, P. İmplantların yüzey özellikleri ve osseointegrasyon. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2 (2007) 43-50.
  • [11] Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid‐etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 40:1 (1998) 1-11.
  • [12] Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw‐shaped implants each prepared with two surface roughnesses. Clinical oral implants research, 9:1 (1998) 11-19.
  • [13] Wheeler S. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatitecoated cylinder implants. Int J OralMaxillofac Implants, 11 (1996) 340-50.
  • [14] Tinsley D, Watson C, Russell J. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clinical Oral Implants Research, 12:2 (2001) 159-166.
  • [15] Becker W, Becker BE, Ricci A, Bahat O, Rosenberg E, Rose LF.A prospective multicenter clinical trial comparing one‐and two‐stage titanium screw‐shaped fixtures with one‐stage plasma‐sprayed solid‐screw fixtures. Clinical implant dentistry and related research, 2:3 (2000) 159-165.
  • [16] Albrektsson T, Wennerberg A. The impact of oral implants-past and future, 1966-2042. Journal of Canadian Dental Association 71:5 (2005) 327.
  • [17] Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. Journal of Biomechanics, 32:8 (1999) 829-836.
  • [18] Wennerberg A, Albrektsson T, Albrektsson B, Krol JJ. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials, 17:1 (1996) 15-22.
  • [19] Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Advances in dental research, 13:1 (1999) 21-26.
  • [20] Ozcan M, Hammerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials, 5:9 (2012) 1528-1545.
  • [21] Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews in Biomedical Engineering, 28:5-6 (2000).
  • [22] Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23:7 (2007) 844-854.
  • [23] Aparicio C,Gil FJ, Fonseca C, BarbosaM, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 24:2 (2003) 263-273.
  • [24] Massaro C, Rotolo F, De Riccardis F, Milella E, Napoli A, Wieland M. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 13:6 (2002) 535-548.
  • [25] Ban S, Iwaya Y, Kono H, Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dental materials, 22:12 (2006) 1115-1120.
  • [26] Novaes Jr AB, Papalexiou V, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites: a histomorphometric study in dogs. Clinical Oral Implants Research, 15:1 (2004) 34-43.
  • [27] Papalexiou V, Novaes Jr AB, Grisi MF, Souza SS, Taba Jr M, Kajiwara JK. Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites: A confocal laser scanning microscopic study. Clinical oral implants research, 15:1 (2004) 44-53.
  • [28] Yokoyama K, Ichikawa T,Murakami H,Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials, 23:12 (2002) 2459-2465.
  • [29] Dalkız M. Dental implantlarda farklı yüzey özelliklerinin osseointegrasyona etkisi. In: Dalkız M, editör. Pratik Diş Hekimliği İmplantolojisi. 1. Baskı. İstanbul: Vestiyer Yayın Gubu, (2009) 133-41.
  • [30] Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clinical Oral Implants Research, 13:3 (2002) 252-259.
  • [31] Gaggl A, Schultes G, Müller WD, Karcher H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials, 21:10 (2000) 1067-1073.
  • [32] Berardi D, Colagiovanni M, Scoccia A, Raffaelli L, Manicone PF, Perfetti G. Evaluation of a new laser surface implant: scanning electron microscopy/energy dispersive X-ray and X-ray photoelectron spectroscopy analyses. Journal of biological regulators and homeostatic agents, 22:3 (2008) 161-167.
  • [33] Shinonaga, T., Kinoshita, S., Okamoto, Y., Tsukamoto, M., Okada, A. Formation of periodic nanostructures with femtosecond laser for creation of new functional biomaterials. Procedia, 42 (2016) 57-61.
  • [34] Liang, C., Wang, H., Yang, J., Li, B., Yang, Y., Li, H. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser. Applied surface science, 261 (2012) 337-342.
  • [35] Raimbault, O., Benayoun, S., Anselme, K., Mauclair, C., Bourgade, T., Kietzig, A. M., Donnet, C. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Materials Science and Engineering, 69 (2016) 311-320.
  • [36] Hu, G., Guan, K., Lu, L., Zhang, J., Lu, N., Guan, Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering, 4:6 (2018) 822-830.
  • [37] De Lara, L. R., Jagdheesh, R., Ocaña, J. L. Corrosion resistance of laser patterned ultrahydrophobic aluminium surface. Materials Letters, 184 (2016) 100-103.
  • [38] Razi, S., Madanipour, K., & Mollabashi, M. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures. Optics & Laser Technology, 80 (2016) 237-246.
  • [39] Celen, S. Lazerle Mikro-İmalatta Q-Anahtarlama. Gazi University Journal of Science Part C: Design and Technology 3 (2015 ) 367-374.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Melek Gedikoğlu This is me 0000-0003-2002-6964

Aleyna Kolsal This is me 0000-0002-0909-1768

Hatice Tutuş This is me 0000-0002-1968-8146

Sıdıka Mine Toker 0000-0003-0762-242X

Publication Date September 30, 2021
Submission Date May 7, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3

Cite

APA Gedikoğlu, M., Kolsal, A., Tutuş, H., Toker, S. M. (2021). Current Approaches in Surface Processing of Biomedical Alloys; Laser Processes. Gazi University Journal of Science Part C: Design and Technology, 9(3), 413-431. https://doi.org/10.29109/gujsc.934338

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526